满分5 > 高中数学试题 >

已知实数列{an}是等比数列,其中a7=1,且a4,a5+1,a6成等差数列. ...

已知实数列{an}是等比数列,其中a7=1,且a4,a5+1,a6成等差数列.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)数列{an}的前n项和记为Sn,证明:Sn<128(n=1,2,3,…).
(Ⅰ)设等比数列{an}的公比为q,根据a7=求得a1和q的关系,进而根据a4,45+1,a5成等差数列.求得q,进而求得a1,则等比数列的饿通项公式可得. (Ⅱ)根据等比数列的求和公式,求得,根据,进而使原式得证. 【解析】 (Ⅰ)设等比数列{an}的公比为q(q∈R), 由a7=a1q6=1,得a1=q-6,从而a4=a1q3=q-3,a5=a1q4=q-2,a6=a1q5=q-1. 因为a4,a5+1,a6成等差数列,所以a4+a6=2(a5+1), 即q-3+q-1=2(q-2+1),q-1(q-2+1)=2(q-2+1). 所以.故. (Ⅱ).
复制答案
考点分析:
相关试题推荐
如图,在底面为直角梯形的四棱锥P-ABCD中,AD∥BC,∠ABC=90°,PA⊥平面ABCD,PA=4,AD=2,AB=2manfen5.com 满分网,BC=6.
(Ⅰ)求证:BD⊥平面PAC;
(Ⅱ)求二面角A-PC-D的大小.

manfen5.com 满分网 查看答案
某项选拔共有四轮考核,每轮设有一个问题,能正确回答问题者进入下一轮考核,否则即被淘汰、已知某选手能正确回答第一、二、三、四轮的问题的概率分别为manfen5.com 满分网manfen5.com 满分网manfen5.com 满分网manfen5.com 满分网,且各轮问题能否正确回答互不影响.
(Ⅰ)求该选手进入第四轮才被淘汰的概率;
(Ⅱ)求该选手至多进入第三轮考核的概率.
(注:本小题结果可用分数表示)
查看答案
设函数manfen5.com 满分网,其中向量manfen5.com 满分网=(m,cos2x),manfen5.com 满分网=(1+sin2x,1),x∈R,且y=f(x)的图象经过点manfen5.com 满分网
(1)求实数m的值;
(2)求f(x)的最小正周期.
查看答案
manfen5.com 满分网如图,平面内有三个向量manfen5.com 满分网manfen5.com 满分网manfen5.com 满分网,其中与manfen5.com 满分网manfen5.com 满分网的夹角为120°,manfen5.com 满分网manfen5.com 满分网的夹角为30°,且|manfen5.com 满分网|=|manfen5.com 满分网|=1,|manfen5.com 满分网|=manfen5.com 满分网,若manfen5.com 满分网manfen5.com 满分网manfen5.com 满分网(λ,μ∈R),则λ+μ的值为    查看答案
安排3名支教教师去4所学校任教,每校至多2人,则不同的分配方案共有    种.(用数字作答) 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.