满分5 > 高中数学试题 >

数列{an}中,,n∈N*. (I)若,设,求证数列{bn}是等比数列,并求出数...

数列{an}中,manfen5.com 满分网,n∈N*
(I)若manfen5.com 满分网,设manfen5.com 满分网,求证数列{bn}是等比数列,并求出数列{an}的通项公式;
(II)若a1>2,n≥2,n∈N,用数学归纳法证明:manfen5.com 满分网
(I)由题意知bn+1=2bn,,数列{bn}是首项为2,公比为2的等比数列,由此可,所以. (II)根据题设条件利用数学归纳法进行证明. 【解析】 (I)证明: ∵, (2分) ∵,∴数列{bn}是首项为2,公比为2的等比数列,(4分) ∴bn=2n,即,得,所以.(6分) (II)证明:(i)当n=2时,∵a1>2, ∴, ∴, ∴,不等式成立;(8分) (ii)假设当n=k(k≥2)时,成立, 那么,当n=k+1时,去证明 ∵, ∴ak+1>2; ∵, ∴; ∴, 所以n=k+1不等式也成立, 由(i)(ii)可知,不等式成立.(12分)
复制答案
考点分析:
相关试题推荐
已知椭圆C:manfen5.com 满分网(a>b>0)的离心率为manfen5.com 满分网,短轴一个端点到右焦点的距离为manfen5.com 满分网
(Ⅰ)求椭圆C的方程;
(Ⅱ)设直线l与椭圆C交于A、B两点,坐标原点O到直线l的距离为manfen5.com 满分网,求△AOB面积的最大值.
查看答案
已知f(x)=ax3+bx2+cx在区间[0,1]上是增函数,在区间(-∞,0),(1,+∞)上是减函数,又manfen5.com 满分网
(Ⅰ)求f(x)的解析式;
(Ⅱ)若在区间[0,m](m>0)上恒有f(x)≤x成立,求m的取值范围.
查看答案
已知实数列{an}是等比数列,其中a7=1,且a4,a5+1,a6成等差数列.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)数列{an}的前n项和记为Sn,证明:Sn<128(n=1,2,3,…).
查看答案
如图,在底面为直角梯形的四棱锥P-ABCD中,AD∥BC,∠ABC=90°,PA⊥平面ABCD,PA=4,AD=2,AB=2manfen5.com 满分网,BC=6.
(Ⅰ)求证:BD⊥平面PAC;
(Ⅱ)求二面角A-PC-D的大小.

manfen5.com 满分网 查看答案
某项选拔共有四轮考核,每轮设有一个问题,能正确回答问题者进入下一轮考核,否则即被淘汰、已知某选手能正确回答第一、二、三、四轮的问题的概率分别为manfen5.com 满分网manfen5.com 满分网manfen5.com 满分网manfen5.com 满分网,且各轮问题能否正确回答互不影响.
(Ⅰ)求该选手进入第四轮才被淘汰的概率;
(Ⅱ)求该选手至多进入第三轮考核的概率.
(注:本小题结果可用分数表示)
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.