满分5 > 高中数学试题 >

已知f(x)是定义在R上的不恒为零的函数,且对于任意实数a、b∈R满足:f=af...

已知f(x)是定义在R上的不恒为零的函数,且对于任意实数a、b∈R满足:f=af(b)+bf(a),f(2)=2,an=manfen5.com 满分网(n∈N*),bn=manfen5.com 满分网(n∈N*),考察下列结论:
①f(0)=f(1);
②f(x)为偶函数;
③数列{bn}为等差数列;
④数列{an}为等比数列,
其中正确的是    .(填序号)
令x=y=0,得f(0)=f(0•0)=0,令x=y=1得f(1)=f(1•1)=2f(1),∴f(1)=0,可知正确; 用特例,f(-2)=f(-1×2)=-f(2)+2f(-1)=-2≠f(2),故f(x)不是偶函数, f(2n)=f(2•2n-1)=2f(2n-1)+2n-1f(2)=2f(2n-1)+2n,有bn=bn-1+1,符合等差数列定义; b1═1,bn=1+(n-1)×1=n,f(2n)=2nbn=n2n,an═2n,故数列{an}是等比数列. 【解析】 ∵f(0)=f(0•0)=0,f(1)=f(1•1)=2f(1),∴f(1)=0,①正确; f(1)=f[(-1)•(-1)]=-2f(-1), ∴f(-1)=0,f(-2)=f(-1×2)=-f(2)+2f(-1)=-2≠f(2), 故f(x)不是偶函数, 故②错; 则f(2n)=f(2•2n-1)=2f(2n-1)+2n-1f(2)=2f(2n-1)+2n, ∴bn=bn-1+1,∴{bn}是等差数列,④正确; b1═1,bn=1+(n-1)×1=n,f(2n)=2nbn=n2n,an═2n, 故数列{an}是等比数列,③正确. 故答案为:①③④
复制答案
考点分析:
相关试题推荐
已知集合A={x|2x-a≤0},B={x|4x-b>0},a,b∈N,且(A∩B)∩N={2,3},由整数对(a,b)组成的集合记为M,则集合M中元素的个数为    查看答案
已知命题p:对一切x∈[0,1],k•4x-k•2x+1+6(k-5)≠0,若命题p是假命题,则实数k的取值范围是    查看答案
数列{an}的前n项和Sn=n2+1,数列{bn}满足:b1=1,当n≥2时,bn=abn-1,设数列{bn}的前n项和为Tn,则T5=    查看答案
设函数f(x)的定义域,值域分别为A,B,且A∩B是单元集,下列命题中:
①若A∩B={a},则f(a)=a;
②若B不是单元集,则满足f[f(x)]=f(x)的x值可能不存在;
③若f(x)具有奇偶性,则f(x)可能为偶函数;
④若f(x)不是常数函数,则f(x)不可能为周期函数.
正确命题的序号为    查看答案
设函数manfen5.com 满分网,区间M=[a,b](其中a<b)集合N={y|y=f(x),x∈M},则使M=N成立的实数对(a,b)有    个. 查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.