满分5 > 高中数学试题 >

设函数f(x)=x2+aIn(1+x)有两个极值点x1、x2,且x1<x2, (...

设函数f(x)=x2+aIn(1+x)有两个极值点x1、x2,且x1<x2
(I)求a的取值范围,并讨论f(x)的单调性;
(II)证明:manfen5.com 满分网
(1)先确定函数的定义域然后求导数fˊ(x),令g(x)=2x2+2x+a,由题意知x1、x2是方程g(x)=0的两个均大于-1的不相等的实根,建立不等关系解之即可,在函数的定义域内解不等式fˊ(x)>0和fˊ(x)<0,求出单调区间; (2)x2是方程g(x)=0的根,将a用x2表示,消去a得到关于x2的函数,研究函数的单调性求出函数的最大值,即可证得不等式. 【解析】 (I) 令g(x)=2x2+2x+a,其对称轴为. 由题意知x1、x2是方程g(x)=0的两个均大于-1的不相等的实根, 其充要条件为,得 (1)当x∈(-1,x1)时,f'(x)>0,∴f(x)在(-1,x1)内为增函数; (2)当x∈(x1,x2)时,f'(x)<0,∴f(x)在(x1,x2)内为减函数; (3)当x∈(x2,+∞)时,f'(x)>0,∴f(x)在(x2,+∞)内为增函数; (II)由(I),a=-(2x22+2x2) ∴f(x2)=x22+aln(1+x2)=x22-(2x22+2x2)ln(1+x2) 设, 则h'(x)=2x-2(2x+1)ln(1+x)-2x=-2(2x+1)ln(1+x) (1)当时,h'(x)>0,∴h(x)在单调递增; (2)当x∈(0,+∞)时,h'(x)<0,h(x)在(0,+∞)单调递减.∴ 故.
复制答案
考点分析:
相关试题推荐
已知椭圆manfen5.com 满分网的离心率为manfen5.com 满分网,过右焦点F的直线l与C相交于A、B两点,当l的斜率为1时,坐标原点O到l的距离为manfen5.com 满分网
(I)求a,b的值;
(II)C上是否存在点P,使得当l绕F转到某一位置时,有manfen5.com 满分网成立?若存在,求出所有的P的坐标与l的方程;若不存在,说明理由.
查看答案
某车间甲组有10名工人,其中有4名女工人;乙组有5名工人,其中有3名女工人,现采用分层抽样方法(层内采用不放回简单随机抽样)从甲、乙两组中共抽取3名工人进行技术考核.
(I)求从甲、乙两组各抽取的人数;
(II)求从甲组抽取的工人中恰有1名女工人的概率;
(III)记ξ表示抽取的3名工人中男工人数,求ξ的数学期望.
查看答案
设数列{an}的前n项和为Sn,已知a1=1,Sn+1=4an+2(n∈N*).
(1)设bn=an+1-2an,证明数列{bn}是等比数列;
(2)求数列{an}的通项公式.
查看答案
manfen5.com 满分网如图,直三棱柱ABC-A1B1C1中,AB⊥AC,D、E分别为AA1、B1C的中点,DE⊥平面BCC1
(I)证明:AB=AC;
(II)设二面角A-BD-C为60°,求B1C与平面BCD所成的角的大小.
查看答案
设△ABC的内角A、B、C的对边长分别为a、b、c,manfen5.com 满分网,b2=ac,求B.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.