满分5 > 高中数学试题 >

如图,在直三棱柱ABC-A1B1C1中,AC=3,BC=4,AB=5,AA1=4...

manfen5.com 满分网如图,在直三棱柱ABC-A1B1C1中,AC=3,BC=4,AB=5,AA1=4,点D为AB的中点.
(Ⅰ)求证AC⊥BC1
(Ⅱ)求证AC1∥平面CDB1
(Ⅲ)求异面直线AC1与B1C所成角的余弦值.
解法一:(1):利用勾股定理的逆定理判断出AC⊥BC,同时因为三棱柱为直三棱柱,从而证出. (2):因为D为AB的中点,连接C1B和CB1交点为E,连接DE,∵D是AB的中点,E是BC1的中点,根据三角形中位线定理得DE∥AC1,得到AC1∥平面CDB1;第三问:因为AC1∥DE,所以∠CED为AC1与B1C所成的角,求出此角即可. 解法二:利用空间向量法.如图建立坐标系, (1):证得向量点积为零即得垂直. (2):=λ,与两个向量或者共线或者平行可得.第三问: 证明:(Ⅰ)直三棱柱ABC-A1B1C1,底面三边长AC=3,BC=4,AB=5, ∴AC⊥BC,且BC1在平面ABC内的射影为BC,∴AC⊥BC1; (Ⅱ)设CB1与C1B的交点为E,连接DE, ∵D是AB的中点,E是BC1的中点, ∴DE∥AC1, ∵DE⊂平面CDB1,AC1⊂平面CDB1, ∴AC1∥平面CDB1; (Ⅲ)∵DE∥AC1,∴∠CED为AC1与B1C所成的角, 在△CED中,ED=AC1=,CD=AB=,CE=CB1=2, ∴cos∠CED==, ∴异面直线AC1与B1C所成角的余弦值. 解法二: ∵直三棱锥ABC-A1B1C1底面三边长AC=3,BC=4,AB=5,AC,BC,CC1两两垂直. 如图建立坐标系,则C(0,0,0),A(3,0,0),C1(0,0,4),B(0,4,0),B1(0,4,4),D(,2,0)(Ⅰ)∵=(-3,0,0),=(0,4,4), ∴•=0, ∴⊥. (Ⅱ)设CB1与C1B的交点为E,则E(0,2,2) ∵=(-,0,2),=(-3,0,4), ∴=,∴∥ ∵DE⊂平面CDB1,AC1⊂平面CDB1,∴AC1∥平面CDB1. (Ⅲ)∵=(-3,0,0),=(0,4,4), ∴cos<,>==, ∴异面直线AC1与B1C所成角的余弦值为.
复制答案
考点分析:
相关试题推荐
已知tanmanfen5.com 满分网=2,求
(1)tan(α+manfen5.com 满分网)的值
(2)manfen5.com 满分网的值.
查看答案
已知n次多项式Pn(x)=axn+a1xn-1+…+an-1x+an
如果在一种算法中,计算xk(k=2,3,4,…,n)的值需要k-1次乘法,计算P3(x)的值共需要9次运算(6次乘法,3次加法),那么计算Pn(x)的值共需要    次运算.
下面给出一种减少运算次数的算法:P(x)=a.Pn+1(x)=xPn(x)+ak+1(k=0,l,2,…,n-1).利用该算法,计算P3(x)的值共需要6次运算,计算Pn(x)的值共需要    次运算. 查看答案
设函数f(x)=2x,对于任意的x1,x2(x1≠x2),有下列命题
①f(x1+x2)=f(x1)•f(x2);②f=f(x1)+f(x2);③manfen5.com 满分网;④manfen5.com 满分网.其中正确的命题序号是     查看答案
在△ABC中,AC=manfen5.com 满分网,∠A=45°,∠C=75°,则BC的长度是    查看答案
函数f(x)=manfen5.com 满分网+manfen5.com 满分网的定义域为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.