满分5 > 高中数学试题 >

如图,已知直四棱柱ABCD-A1B1C1D1的底面是边长为2、∠ADC=120°...

如图,已知直四棱柱ABCD-A1B1C1D1的底面是边长为2、∠ADC=120°的菱形,Q是侧棱DD1(DD1manfen5.com 满分网)延长线上的一点,过点Q、A1、C1作菱形截面QA1PC1交侧棱BB1于点P.设截面QA1PC1的面积为S1,四面体B1-A1C1P的三侧面△B1A1C1、△B1PC1、△B1A1P面积的和为S2,S=S1-S2
(Ⅰ)证明:AC⊥QP;
(Ⅱ)当S取得最小值时,求cos∠A1QC1的值.

manfen5.com 满分网
(Ⅰ)要证明:AC⊥QP;只要证明AC垂直平面PCDQ即可.也就是证明AC垂直平面内的相交直线即可. (Ⅱ)设O是A1C1与QP的交点,QD1=x、QO=y,则x2+1=y2,利用S=S1-S2.表示出面积S,当S取得最小值时,求出x的值,然后求cos∠A1QC1的值. 【解析】 (Ⅰ)连AC、BD,则AC⊥BD; ∵PB⊥底面ABCD,则AC⊥BP,∴AC⊥平面QPBD. 而QP⊂平面QPBD,∴AC⊥QP.(4分) (Ⅱ)设O是A1C1与QP的交点,QD1=x、QO=y,则x2+1=y2,S=S1-S2 ==.(8分) ∵令,则, ∴当即时,S取得最小值.(11分) 此时,,由余弦定理有cos∠A1QC1=.(13分)
复制答案
考点分析:
相关试题推荐
班级联欢时,主持人拟出了如下一些节目:跳双人舞、独唱、朗诵等,指定3个男生和2个女生来参与,把5个人分别编号为1,2,3,4,5,其中1,2,3号是男生,4,5号是女生,将每个人的号分别写在5张相同的卡片上,并放入一个箱子中充分混合,每次从中随机地取出一张卡片,取出谁的编号谁就参与表演节目.
(I)为了选出2人来表演双人舞,连续抽取2张卡片,求取出的2人不全是男生的概率;
(Ⅱ)为了选出2人分别表演独唱和朗诵,抽取并观察第一张卡片后,又放回箱子中,充分混合后再从中抽取第二张卡片,求:独唱和朗诵由同一个人表演的概率.
查看答案
如图所示,正在亚丁湾执行护航任务的某导弹护卫舰,突然收到一艘商船的求救信号,紧急前往相关海域.到达相关海域O处后发现,在南偏西20°、5海里外的洋面M处有一条海盗船,它正以每小时20海里的速度向南偏东40°的方向逃窜.某导弹护卫舰当即施放载有突击队员的快艇进行拦截,快艇以每小时30海里的速度向南偏东θ°的方向全速追击.请问:快艇能否追上海盗船?如果能追上,请求出sin(θ°+20°)的值;如果未能追上,请说明理由.(假设海面上风平浪静、海盗船逃窜的航向不变、快艇运转正常无故障等)

manfen5.com 满分网 查看答案
manfen5.com 满分网如图,已知PB是⊙O的切线,A是切点,D是弧AC上一点,若∠BAC=70°,则∠ADC=    查看答案
设曲线C的参数方程为manfen5.com 满分网是参数,a>0),若曲线C与直线3x+4y-5=0只有一个交点,则实数a的值是    查看答案
设平面上n个圆周最多把平面分成f(n)片(平面区域),则f(2)=    ,f(n)=    .(n≥1,n是自然数) 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.