满分5 > 高中数学试题 >

正四棱锥的底面边长为2,侧棱长为,其主视图和侧视图是全等的等腰三角形,则正视图的...

正四棱锥的底面边长为2,侧棱长为manfen5.com 满分网,其主视图和侧视图是全等的等腰三角形,则正视图的周长为( )
A.2+2manfen5.com 满分网
B.3+manfen5.com 满分网
C.2+manfen5.com 满分网
D.2+2manfen5.com 满分网
几何体的主视图和侧视图是全等的等腰三角形,推知腰是正四棱锥的斜高,求出斜高,即可求出正视图的周长. 【解析】 由于正四棱锥的底面边长为2,侧棱长为, 其主视图和侧视图是全等的等腰三角形; 所以主视图和侧视图中的腰是正四棱锥的斜高. 其长为: 则正视图的周长:2+ 故选D.
复制答案
考点分析:
相关试题推荐
已知manfen5.com 满分网manfen5.com 满分网,则g(x)的图象( )
A.与f(x)的图象相同
B.的图象f(x)关于轴对称
C.向左平移manfen5.com 满分网个单位,得到f(x)的图象
D.向右平移manfen5.com 满分网个单位,得到f(x的图象
查看答案
已知向量manfen5.com 满分网=(sina,sina-1),manfen5.com 满分网=(sina+1,1)则|manfen5.com 满分网-manfen5.com 满分网|的范围是( )
A.(manfen5.com 满分网manfen5.com 满分网
B.(manfen5.com 满分网manfen5.com 满分网]
C.[manfen5.com 满分网manfen5.com 满分网
D.[manfen5.com 满分网manfen5.com 满分网]
查看答案
下列有关命题的说法正确的是( )
A.命题“若x2=1,则x=1”的否命题为:“若x2=1,则x≠1”
B.“x=-1”是“x2-5x-6=0”的必要不充分条件
C.命题“∃x∈R,使得x2+x+1<0”的否定是:“∀x∈R,均有x2+x+1<0”
D.命题“若x=y,则sinx=siny”的逆否命题为真命题
查看答案
已知集合A={y|y=log2x,manfen5.com 满分网<x<2},B={y|y=(manfen5.com 满分网x,0<x<1},则A∩B为( )
A.manfen5.com 满分网
B.(0,2)
C.manfen5.com 满分网
D.manfen5.com 满分网
查看答案
设函数f(x)=xlnx(x>0).
(1)求函数f(x)的最小值;
(2)设F(x)=ax2+f′(x)(a∈R),讨论函数F(x)的单调性;
(3)斜率为k的直线与曲线y=f′(x)交于A(x1,y1)、B(x2,y2)(x1<x2)两点,求证:manfen5.com 满分网
查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.