满分5 > 高中数学试题 >

设函数f(x)=tx2+2t2x+t-1(x∈R,t>0). (I)求f (x)...

设函数f(x)=tx2+2t2x+t-1(x∈R,t>0).
(I)求f (x)的最小值h(t);
(II)若h(t)<-2t+m对t∈(0,2)恒成立,求实数m的取值范围.
(I)由f(x)=t(x+t)2-t3+t-1(x∈R,t>0),根据配方法即可求出最小值; (II)令g(t)=h(t)-(-2t+m)=-t3+3t-1-m,对其求导后讨论即可得出答案. 【解析】 (I)∵f(x)=t(x+t)2-t3+t-1(x∈R,t>0), ∴当x=-t时,f(x)取最小值f(-t)=-t2+t-1, 即h(t)=-t3+t-1; (II)令g(t)=h(t)-(-2t+m)=-t3+3t-1-m, 由g′(t)=-3t2+3=0得t=1,t=-1(不合题意,舍去) 当t变化时g′(t)、g(t)的变化情况如下表:  t  (0,1) 1  (1,2)  g′(t) +  0 -  g(t)  递增  极大值1-m 递减  ∴g(t)在(0,2)内有最大值g(1)=1-m h(t)<-2t+m在(0,2)内恒成立等价于g(t)<0在(0,2)内恒成立, 即等价于1-m<0 所以m的取值范围为m>1.
复制答案
考点分析:
相关试题推荐
已知函数y=g(x)与f(x)=loga(x+1)(a>1)的图象关于原点对称.
(1)写出y=g(x)的解析式;
(2)若函数F(x)=f(x)+g(x)+m为奇函数,试确定实数m的值;
(3)当x∈[0,1)时,总有f(x)+g(x)≥n成立,求实数n的取值范围.
查看答案
奇函数f(x)=ax3+bx2+cx的图象E过点manfen5.com 满分网两点.
(1)求f(x)的表达式;
(2)求f(x)的单调区间;
(3)若方程f(x)+m=0有三个不同的实根,求m的取值范围.
查看答案
设有两个命题:
(1)关于x的不等式sinxcosx>m2+manfen5.com 满分网的解集是R;
(2)函数f(x)=-(7-3m)x是减函数;若这两个命题都是真命题,求m的取值范围.
查看答案
已知函数manfen5.com 满分网
(1)证明f(x)在(0,+∞)上单调递增;
(2)若f(x)的定义域、值域都是manfen5.com 满分网,求实数a的值;
查看答案
记关于x的不等式manfen5.com 满分网的解集为P,不等式|x-1|≤1的解集为Q.
(I)若a=3,求P;
(II)若Q⊆P,求正数a的取值范围.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.