(1)用综合法,首先化简|1-ab|2-|a-b|2可得,|1-ab|2-|a-b|2=1+a2b2-a2-b2=(a2-1)(b2-1);结合题意中|a|<1,|b|<1,可得a、b的范围,进而可得|1-ab|2-|a-b|2>0,由不等式的性质,可得答案;
(2)根据题意,将||>1转化为分式,可得|>1⇔(a2λ2-1)(b2-1)>0,由于|b|<1,则b2-1>0,即只需a2λ2-1>0即可,分a=0与a≠0两种情况讨论,可得答案;
(3)根据题意,可得||<1⇔(a2-1)(b2-1)<0,结合题意|a|<1,可得a2<1,即只需1-b2>0,解可得答案.
【解析】
(1)证明:|1-ab|2-|a-b|2=1+a2b2-a2-b2=(a2-1)(b2-1).
∵|a|<1,|b|<1,
∴a2-1<0,b2-1<0.
∴|1-ab|2-|a-b|2>0.
∴|1-ab|>|a-b|,=>1.
(2)【解析】
∵||>1⇔|1-abλ|2-|aλ-b|2=(a2λ2-1)(b2-1)>0.
∵b2<1,
∴a2λ2-1<0对于任意满足|a|<1的a恒成立.
当a=0时,a2λ2-1<0成立;
当a≠0时,要使λ2<对于任意满足|a|<1的a恒成立,而>1,
∴|λ|≤1.故-1≤λ≤1.
(3)||<1⇔()2<1⇔(a+b)2<(1+ab)2⇔a2+b2-1-a2b2<0⇔(a2-1)(b2-1)<0.
∵|a|<1,
∴a2<1.
∴1-b2>0,
即-1<b<1.