满分5 > 高中数学试题 >

设f(x)=ax3+bx2+cx的极小值为-8,其导函数y=f'(x)的图象经过...

manfen5.com 满分网设f(x)=ax3+bx2+cx的极小值为-8,其导函数y=f'(x)的图象经过点manfen5.com 满分网,如图所示,
(1)求f(x)的解析式;
(2)若对x∈[-3,3]都有f(x)≥m2-14m恒成立,求实数m的取值范围.
(1)求出y=f'(x),因为导函数图象经过(-2,0)和(,0),代入即可求出a、b、c之间的关系式,再根据图象可知函数的单调性,而f(x)极小值为-8可得f(-2)=-8,解出即可得到a、b、c的值; (2)根据函数增减性求出函数在区间[-3,3]的最小值大于等于m2-14m,即可求出m的范围. 【解析】 (1)∵f'(x)=3ax2+2bx+c,且y=f'(x)的图象经过点(-2,0),, ∴ ∴f(x)=ax3+2ax2-4ax, 由图象可知函数y=f(x)在(-∞,-2)上单调递减,在上单调递增,在上单调递减, 由f(x)极小值=f(-2)=a(-2)3+2a(-2)2-4a(-2)=-8,解得a=-1 ∴f(x)=-x3-2x2+4x (2)要使对x∈[-3,3]都有f(x)≥m2-14m恒成立, 只需f(x)min≥m2-14m即可. 由(1)可知函数y=f(x)在[-3,2)上单调递减,在上单调递增,在上单调递减 且f(-2)=-8,f(3)=-33-2×32+4×3=-33<-8 ∴f(x)min=f(3)=-33(11分)-33≥m2-14m⇒3≤m≤11 故所求的实数m的取值范围为{m|3≤m≤11}.
复制答案
考点分析:
相关试题推荐
manfen5.com 满分网如图,PCBM是直角梯形,∠PCB=90°,PM∥BC,PM=1,BC=2,又AC=1,∠ACB=120°,AB⊥PC,直线AM与直线PC所成的角为60°.
(Ⅰ)求证:平面PAC⊥平面ABC;
(Ⅱ)求二面角M-AC-B的大小;
(Ⅲ)求三棱锥P-MAC的体积.
查看答案
某果园要将一批水果用汽车从所在城市甲运至销售商所在城市乙,已知从城市甲到城市乙只有两条公路,且运费由果园承担.若果园恰能在约定日期(×月×日)将水果送到,则销售商一次性支付给果园20万元;若在约定日期前送到,每提前一天销售商将多支付给果园1万元;若在约定日期后送到,每迟到一天销售商将少支付给果园1万元.为保证水果新鲜度,汽车只能在约定日期的前两天出发,且只能选择其中的一条公路运送水果,已知下表内的信息:manfen5.com 满分网
(注:毛利润=销售商支付给果园的费用-运费)
(Ⅰ)记汽车走公路1时果园获得的毛利润为ξ(单位:万元),求ξ的分布列和数学期望Eξ;
(Ⅱ)假设你是果园的决策者,你选择哪条公路运送水果有可能让果园获得的毛利润更多?
查看答案
已知向量manfen5.com 满分网=(cosx,sinx),manfen5.com 满分网=(-cosx,cosx),manfen5.com 满分网=(-1,0).
(Ⅰ)若manfen5.com 满分网,求向量manfen5.com 满分网manfen5.com 满分网的夹角;
(Ⅱ)当manfen5.com 满分网时,求函数manfen5.com 满分网的最大值.
查看答案
如图,圆O1与圆O2相交于A、B,过A作圆O1的切线交圆O2于C,连CB并延长交圆O1于D,连AD,AB=2,BD=3,BC=5,则AD的长为    
manfen5.com 满分网 查看答案
在极坐标系中,点manfen5.com 满分网到曲线manfen5.com 满分网上的点的距离的最小值为     查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.