登录
|
注册
返回首页
联系我们
在线留言
满分5
>
高中数学试题
>
直线y=x+2经过椭圆=1(a>b>0)的一个焦点和一个顶点,则椭圆的离心率为 ...
直线y=x+2经过椭圆
=1(a>b>0)的一个焦点和一个顶点,则椭圆的离心率为
.
由题意可知直线y=x+2与x轴的交点正好是椭圆的左焦点,直线与y轴的交点正是椭圆的上顶点.进而根据直线与x轴和y轴的交点即可求得b和c,根据a=,最后可得离心率e. 【解析】 ∵直线y=x+2与y轴的交点为(0,2),与x轴的交点为(-2,0),故可知椭圆的短轴顶点为(0,2),焦点坐标为(-2,0),即b=2,c=2 ∴a==2 ∴e== 故答案为:
复制答案
考点分析:
相关试题推荐
如果一个几何体的三视图如图所示,则此几何体的表面积是
.
查看答案
在△ABC中,a,b,c分别是角A,B,C所对的边,已知
,则角A等于
.
查看答案
若
,且θ是第三象限角,则sinθ=
.
查看答案
设x、y满足约束条件
若目标函数z=ax+by(a>0,b>0)的最大值为12,则
的最小值为( )
A.2
B.
C.4
D.
查看答案
已知集合A={x|1≤x≤20,x∈N
*
},任取x∈A,则对数log
2
x是一个正整数的概率是( )
A.
B.
C.
D.
查看答案
试题属性
题型:解答题
难度:中等
Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.