(1)把点(an,an+1)代入直线y=x+2中可知数列{an}是以3为首项,以2为公差的等差数,进而利用等差数列的通项公式求得答案.
(2)把(1)中求得an代入bn=an•3n,利用错位相减法求得数列{bn}的前n项和Tn.
【解析】
(1)∵点(an,an+1)在直线y=x+2上.
∴数列{an}是以3为首项,以2为公差的等差数,
∴an=3+2(n-1)=2n+1
(2)∵bn=an•3n,
∴bn=(2n+1)•3n∴Tn=3×3+5×32+7×33+…+(2n-1)•3n-1+(2n+1)•3n①
∴3Tn=3×32+5×33+…+(2n-1)•3n+(2n+1)•3n+1②
由①-②得-2Tn=3×3+2(32+33++3n)-(2n+1)•3n+1
==-2n•3n+1
∴Tn=n•3n+1.