满分5 > 高中数学试题 >

已知函数f(x)=(1+)ex,其中a>0. (Ⅰ)求函数f(x)的零点; (Ⅱ...

已知函数f(x)=(1+manfen5.com 满分网)ex,其中a>0.
(Ⅰ)求函数f(x)的零点;
(Ⅱ)讨论y=f(x)在区间(-∞,0)上的单调性;
(Ⅲ)在区间(-∞,-manfen5.com 满分网]上,f(x)是否存在最小值?若存在,求出最小值;若不存在,请说明理由.
(Ⅰ)欲求函数f(x)的零点,先求出f(x)=0的解,即可得到函数f(x)的零点; (Ⅱ)先确定函数的定义域然后求导数fˊ(x),在定义域内求出f′(x)=0的值x1=,再讨论点x1=附近的导数的符号的变化情况,从而得到函数f(x)的单调区间; (Ⅲ)先利用作差法比较x1与-a的大小,从而得到x1<-a<-<0,又函数在(x1,0)上是减函数,则函数在区间(-∞,-]上的最小值为f(-),求出f(-)即可. 【解析】 (Ⅰ)f(x)=0,得x=-a,所以函数f(x)的零点为-a.(2分) (Ⅱ)函数f(x)在区域(-∞,0)上有意义,f′(x)=,(5分) 令f′(x)=0,得x1=,x2=, 因为a>0,所以x1<0,x2>0.(7分) 当x在定义域上变化时,f'(x)的变化情况如下: 所以在区间(-∞,)上f(x)是增函数,(8分) 在区间(,0)上f(x)是减函数.(9分) (Ⅲ)在区间(-∞,-]上f(x)存在最小值f(-).(10分) 证明:由(Ⅰ)知-a是函数f(x)的零点, 因为-a-x1=-a-=>0, 所以x1<-a<0,(11分) 由知,当x<-a时,f(x)>0,(12分) 又函数在(x1,0)上是减函数,且x1<-a<-<0, 所以函数在区间(-x1,-]上的最小值为f(-),且f(-)<0,(13分) 所以函数在区间(-∞,-]上的最小值为f(-), 计算得f(-)=-.(14分)
复制答案
考点分析:
相关试题推荐
椭圆manfen5.com 满分网的离心率为manfen5.com 满分网,长轴端点与短轴端点间的距离为manfen5.com 满分网
(Ⅰ)求椭圆C的方程;
(Ⅱ)过点D(0,4)的直线l与椭圆C交于两点E,F,O为坐标原点,若△OEF为直角三角形,求直线l的斜率.
查看答案
在四棱锥P-ABCD中,侧面PCD⊥底面ABCD,PD⊥CD,E为PC中点,底面ABCD是直角梯形,AB∥CD,∠ADC=90°,AB=AD=PD=1,CD=2.
(Ⅰ)求证:BE∥平面PAD;
(Ⅱ)求证:BC⊥平面PBD;
(Ⅲ)设Q为侧棱PC上一点,manfen5.com 满分网,试确定λ的值,使得二面角Q-BD-P为45°.

manfen5.com 满分网 查看答案
在一个选拔项目中,每个选手都需要进行4轮考核,每轮设有一个问题,能正确回答者进入下一轮考核,否则被淘汰.已知某选手能正确回答第一、二、三、四轮问题的概率分别为manfen5.com 满分网manfen5.com 满分网manfen5.com 满分网manfen5.com 满分网,且各轮问题能否正确回答互不影响.
(Ⅰ)求该选手进入第三轮才被淘汰的概率;
(Ⅱ)求该选手至多进入第三轮考核的概率;
(Ⅲ)该选手在选拔过程中回答过的问题的个数记为X,求随机变量X的分布列和期望.
查看答案
已知α为锐角,且manfen5.com 满分网
(Ⅰ)求tanα的值;
(Ⅱ)求manfen5.com 满分网的值.
查看答案
设函数f(x)的定义域为D,若存在非零实数t使得对于任意x∈M(M⊆D),有x+t∈D,且f(x+t)≥f(x),则称f(x)为M上的t高调函数.如果定义域为[-1,+∞)的函数f(x)=x2为[-1,+∞)上的m高调函数,那么实数m的取值范围是     .如果定义域为R的函数f(x)是奇函数,当x≥0时,f(x)=|x-a2|-a2,且f(x)为R上的4高调函数,那么实数a的取值范围是     查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.