设出Z1,Z2和Z对应的复数分别为z1,z2和z,由于Z是△OZ1Z2的重心,表示其关系,求解即可.
【解析】
设Z1,Z2和Z对应的复数分别为z1,z2和z,其中
z1=r1(coθ+isinθ),
z2=r2(coθ-isinθ).
由于Z是△OZ1Z2的重心,根据复数加法的几何意义,
则有3z=z1+z2=(r1+r2)cosθ+(r1-r2)isinθ.
于是|3z|2=(r1+r2)2cos2θ+(r1-r2)2sin2θ
=(r1-r2)2cos2θ+4r1r2cos2θ+(r1-r2)2sin2θ
=(r1-r2)2+4r1r2cos2θ
又知△OZ1Z2的面积为定值S及,
所以,即
由此,
故当r1=r2=时,|z|最小,且|z|最小值=.