满分5 > 高中数学试题 >

已知函数f(x)=xe-x(x∈R) (Ⅰ)求函数f(x)的单调区间和极值; (...

已知函数f(x)=xe-x(x∈R)
(Ⅰ)求函数f(x)的单调区间和极值;
(Ⅱ)已知函数y=g(x)的图象与函数y=f(x)的图象关于直线x=1对称,证明:当x>1时,f(x)>g(x);
(Ⅲ)如果x1≠x2,且f(x1)=f(x2),证明x1+x2>2.
(1)先求导求出导数为零的值,通过列表判定导数符号,确定出单调性和极值. (2)先利用对称性求出g(x)的解析式,比较两个函数的大小可将它们作差,研究新函数的最小值,使最小值大于零,不等式即可证得. (3)通过题意分析先讨论,可设x1<1,x2>1,利用第二问的结论可得f(x2)>g(x2),根据对称性将g(x2)换成f(2-x2),再利用单调性根据函数值的大小得到自变量的大小关系. 【解析】 (Ⅰ)【解析】 f′(x)=(1-x)e-x 令f′(x)=0,解得x=1 当x变化时,f′(x),f(x)的变化情况如下表 所以f(x)在(-∞,1)内是增函数,在(1,+∞)内是减函数. 函数f(x)在x=1处取得极大值f(1)且f(1)=. (Ⅱ)证明:由题意可知g(x)=f(2-x),得g(x)=(2-x)ex-2 令F(x)=f(x)-g(x),即F(x)=xe-x+(x-2)ex-2 于是F'(x)=(x-1)(e2x-2-1)e-x 当x>1时,2x-2>0,从而e2x-2-1>0,又e-x>0,所以f′(x)>0,从而函数F(x)在[1,+∞)是增函数. 又F(1)=e-1-e-1=0,所以x>1时,有f(x)>F(1)=0,即f(x)>g(x). (Ⅲ)证明:(1)若(x1-1)(x2-1)=0,由(I)及f(x1)=f(x2),则x1=x2=1.与x1≠x2矛盾. (2)若(x1-1)(x2-1)>0,由(I)及f(x1)=f(x2),得x1=x2.与x1≠x2矛盾. 根据(1)(2)得(x1-1)(x2-1)<0,不妨设x1<1,x2>1. 由(Ⅱ)可知,f(x2)>g(x2), 则g(x2)=f(2-x2), 所以f(x2)>f(2-x2), 从而f(x1)>f(2-x2). 因为x2>1,所以2-x2<1, 又由(Ⅰ)可知函数f(x)在区间(-∞,1)内是增函数, 所以x1>2-x2,即x1+x2>2.
复制答案
考点分析:
相关试题推荐
已知椭圆manfen5.com 满分网(a>b>0)的离心率e=manfen5.com 满分网,连接椭圆的四个顶点得到的菱形的面积为4.
(Ⅰ)求椭圆的方程;
(Ⅱ)设直线l与椭圆相交于不同的两点A、B,已知点A的坐标为(-a,0).
(i)若manfen5.com 满分网,求直线l的倾斜角;
(ii)若点Q(0,y)在线段AB的垂直平分线上,且manfen5.com 满分网.求y的值.
查看答案
如图,在长方体ABCD-A1B1C1D1中,E、F分别是棱BC,CC1上的点,CF=AB=2CE,AB:AD:AA1=1:2:4,
(1)求异面直线EF与A1D所成角的余弦值;
(2)证明AF⊥平面A1ED;
(3)求二面角A1-ED-F的正弦值.

manfen5.com 满分网 查看答案
某射手每次射击击中目标的概率是manfen5.com 满分网,且各次射击的结果互不影响.
(Ⅰ)假设这名射手射击5次,求恰有2次击中目标的概率
(Ⅱ)假设这名射手射击5次,求有3次连续击中目标.另外2次未击中目标的概率;
(Ⅲ)假设这名射手射击3次,每次射击,击中目标得1分,未击中目标得0分,在3次射击中,若有2次连续击中,而另外1次未击中,则额外加1分;若3次全击中,则额外加3分,记ξ为射手射击3次后的总的分数,求ξ的分布列.
查看答案
已知函数f(x)=2manfen5.com 满分网sinxcosx+2cos2x-1(x∈R)
(Ⅰ)求函数f(x)的最小正周期及在区间[0,manfen5.com 满分网]上的最大值和最小值;
(Ⅱ)若f(x)=manfen5.com 满分网,x∈[manfen5.com 满分网manfen5.com 满分网],求cos2x的值.
查看答案
设函数f(x)=x2-1,对任意manfen5.com 满分网manfen5.com 满分网恒成立,则实数m的取值范围是    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.