满分5 > 高中数学试题 >

曲线y=x3-2x+1在点(1,0)处的切线方程为( ) A.y=x-1 B.y...

曲线y=x3-2x+1在点(1,0)处的切线方程为( )
A.y=x-1
B.y=-x+1
C.y=2x-2
D.y=-2x+2
欲求在点(1,0)处的切线方程,只须求出其斜率的值即可,故先利用导数求出在x=1处的导函数值,再结合导数的几何意义即可求出切线的斜率.从而问题解决. 【解析】 验证知,点(1,0)在曲线上 ∵y=x3-2x+1, y′=3x2-2,所以k=y′|x-1=1,得切线的斜率为1,所以k=1; 所以曲线y=f(x)在点(1,0)处的切线方程为: y-0=1×(x-1),即y=x-1. 故选A.
复制答案
考点分析:
相关试题推荐
曲线y=manfen5.com 满分网在点(-1,-1)处的切线方程为( )
A.y=2x+1
B.y=2x-1
C.y=-2x-3
D.y=-2x-2
查看答案
已知点P在曲线y=manfen5.com 满分网上,α为曲线在点P处的切线的倾斜角,则α的取值范围是( )
A.[0,manfen5.com 满分网
B.manfen5.com 满分网
C.manfen5.com 满分网
D.manfen5.com 满分网
查看答案
若f(x)=ax4+bx2+c满足f′(1)=2,则f′(-1)=( )
A.-4
B.-2
C.2
D.4
查看答案
在数列{an}中,a1=0,且对任意k∈N*.a2k-1,a2k,a2k+1成等差数列,其公差为dk
(Ⅰ)若dk=2k,证明a2k,a2k+1,a2k+2成等比数列(k∈N*
(Ⅱ)若对任意k∈N*,a2k,a2k+1,a2k+2成等比数列,其公比为qk
查看答案
已知函数f(x)=xe-x(x∈R)
(Ⅰ)求函数f(x)的单调区间和极值;
(Ⅱ)已知函数y=g(x)的图象与函数y=f(x)的图象关于直线x=1对称,证明:当x>1时,f(x)>g(x);
(Ⅲ)如果x1≠x2,且f(x1)=f(x2),证明x1+x2>2.
查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.