登录
|
注册
返回首页
联系我们
在线留言
满分5
>
高中数学试题
>
若不等式对于任意正整数n恒成立,则实数a的取值范围为 .
若不等式
对于任意正整数n恒成立,则实数a的取值范围为
.
要使不等式对于任意正整数n恒成立,即要<2,为两项-a-和a+ 求出的最大值要小于2,列出不等式求出a的范围即可. 【解析】 由得:<2, 而f(n)=, 当n取奇数时,f(n)=-a-;当n取偶数时,f(n)=a+. 所以f(n)只有两个值,当-a-<a+时,f(n)max=a+,即a+<2,得到a<; 当-a-≥a+时,即-a-≤2,得a≥-2, 所以a的取值范围为-2≤a<. 故答案为:-2≤a<
复制答案
考点分析:
相关试题推荐
若函数
的最小值是
.
查看答案
的展开式中,常数项为15,则n=
.
查看答案
(理)若sin(α-β)cosα-cos(α-β)sinα=
,β在第三象限,则
=
.
(文)已知α∈(
,π),sinα=
,则tan
=
.
查看答案
如图(1),正四棱柱ABCD-A′B′C′D′中,AA′=2AB,则异面直线A′B与AD′所成的角的余弦值是
.
查看答案
在△ABC中,角A,B,C所对的边分别为a,b,c,若a=1,b=
,
,则B=
.
查看答案
试题属性
题型:解答题
难度:中等
Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.