如图,A、B是两圆O
1、O
2的交点,AC是小圆O
1的直径,D和E分别是CA和CB的延长线与大圆O
2的交点,已知AC=2,BE=5,且BC=AD.
(Ⅰ)求DE的长;
(Ⅱ)求圆O
2的面积.
考点分析:
相关试题推荐
给定两个函数
解决如下问题:
(Ⅰ)若f(x)在x=1处取得极值,求函数f(x)的单调区间;
(Ⅱ)若f(x)在区间(2,+∞)为增函数,求m的取值范围;
(Ⅲ)在(Ⅱ)的条件下,若关于x的方程f(x)-g(x)=0有三个不同的根,求m的取值范围.
查看答案
已知P是圆x
2+y
2=9,上任意一点,由P点向x轴做垂线段PQ,垂足为Q,点M在PQ上,且
,点M的轨迹为曲线C.
(Ⅰ)求曲线C的轨迹方程;
(Ⅱ)过点(0,-2)的直线l与曲线C相交于A、B两点,试问在直线
上是否存在点N,使得四边形OANB为矩形,若存在求出N点坐标,若不存在说明理由.
查看答案
某学校为了了解高三学生月考的数学成绩,从甲、乙两班各抽取10名学生,并统计他们的成绩(成绩均为整数且满分为100分),成绩如下:
甲班:97,81,91,80,89,79,92,83,85,93
乙班:60,80,87,77,96,64,76,60,84,96
(Ⅰ)根据抽取结果填写茎叶图,并根据所填写的茎叶图,对甲、乙两班的成绩做对比,写出两个统计结论;
(Ⅱ)若可计算得抽取甲班的10名学生的数学成绩的平均值为
,将10名甲班学生的数学成绩依次输入,按程序框图进行运算,问输出的S大小为多少?并说明S的统计学意义;
(Ⅲ)学校规定成绩在90分以上为优秀,现准备从甲、乙两班所抽取的学生中选取两名成绩为优秀的学生参加数学竞赛,求至少有一名乙班学生参加数学竞赛的概率.
查看答案
已知四棱锥P-ABCD的底面是边长为4的正方形,PD⊥底面ABCD,PD=6,M,N分别为PB,AB的中点,设AC和BD相交于点O
(Ⅰ)证明:OM∥底面PAD;
(Ⅱ)若DF⊥PA且交PA于F点,证明DF⊥平面PAB;
(Ⅲ)求四面体D-MNB的体积
查看答案
设函数
,当
时,函数f(x)的最大值与最小值的和为
.
(I)求函数f(x)的最小正周期及单调递减区间;
(II)作出y=f(x)在x∈[0,π]上的图象.(不要求书写作图过程)
查看答案