从数列{a
n}中取出部分项,并将它们按原来的顺序组成一个数列,称之为数列{a
n}的一个子数列.设数列{a
n}是一个首项为a
1、公差为d(d≠0)的无穷等差数列.
(1)若a
1,a
2,a
5成等比数列,求其公比q.
(2)若a
1=7d,从数列{a
n}中取出第2项、第6项作为一个等比数列的第1项、第2项,试问该数列是否为{a
n}的无穷等比子数列,请说明理由.
(3)若a
1=1,从数列{a
n}中取出第1项、第m(m≥2)项(设a
m=t)作为一个等比数列的第1项、第2项,试问当且仅当t为何值时,该数列为{a
n}的无穷等比子数列,请说明理由.
考点分析:
相关试题推荐
已知椭圆C:
(a>b>0),其焦距为2c,若
(≈0.618),则称椭圆C为“黄金椭圆”.
(1)求证:在黄金椭圆C:
(a>b>0)中,a、b、c成等比数列.
(2)黄金椭圆C:
(a>b>0)的右焦点为F
2(c,0),P为椭圆C上的任意一点.是否存在过点F
2、P的直线l,使l与y轴的交点R满足
?若存在,求直线l的斜率k;若不存在,请说明理由.
(3)在黄金椭圆中有真命题:已知黄金椭圆C:
(a>b>0)的左、右焦点分别是F
1(-c,0)、F
2(c,0),以A(-a,0)、B(a,0)、D(0,-b)、E(0,b)为顶点的菱形ADBE的内切圆过焦点F
1、F
2.试写出“黄金双曲线”的定义;对于上述命题,在黄金双曲线中写出相关的真命题,并加以证明.
查看答案
如图,反比例函数y=f(x)(x>0)的图象过点A(1,4)和B(4,1),点P(x,y)为该函数图象上一动点,过P分别作x轴、y轴的垂线,垂足为C、D.记四边形OCPD(O为坐标原点)与三角形OAB的公共部分面积为S.
(1)求S关于x的表达式;
(2)求S的最大值及此时x的值.
查看答案
在长方体ABCD-A
1B
1C
1D
1中,AB=BC=2,过A
1、C
1、B三点的平面截去长方体的一个角后,得到如图所示的几何体ABCD-A
1C
1D
1,且这个几何体的体积为10.
(1)求棱A
1A的长;
(2)求点D到平面A
1BC
1的距离.
查看答案
已知关于x的实系数一元二次方程ax
2+bx+c=0有两个虚根x
1,x
2,且
(i为虚数单位),|x
1-x
2|=1,求实数b的值、
查看答案
已知曲线C:
,下列叙述中错误的是( )
A.垂直于x轴的直线与曲线C只有一个交点
B.直线y=kx+m(k,m∈R)与曲线C最多有三个交点
C.曲线C关于直线y=-x对称
D.若P
1(x
1,y
1),P
2(x
2,y
2)为曲线C上任意两点,则有
查看答案