满分5 > 高中数学试题 >

已知函数在[1,+∞)上为增函数,且θ∈(0,π),,m∈R. (1)求θ的值;...

已知函数manfen5.com 满分网在[1,+∞)上为增函数,且θ∈(0,π),manfen5.com 满分网,m∈R.
(1)求θ的值;
(2)若f(x)-g(x)在[1,+∞)上为单调函数,求m的取值范围;
(3)设manfen5.com 满分网,若在[1,e]上至少存在一个x,使得f(x)-g(x)>h(x)成立,求m的取值范围.
(1)由题意可知.由θ∈(0,π),知sinθ>0.再由sinθ≥1,结合θ∈(0,π),可以得到θ的值. (2)由题设条件知.mx2-2x+m≥0或者mx2-2x+m≤0在[1,+∞)恒成立.由此知,由此可知m的取值范围. (3)构造F(x)=f(x)-g(x)-h(x),.由此入手可以得到m的取值范围是. 【解析】 (1)由题意,≥0在[1,+∞)上恒成立,即. ∵θ∈(0,π),∴sinθ>0.故sinθ•x-1≥0在[1,+∞)上恒成立,只须sinθ•1-1≥0, 即sinθ≥1,只有sinθ=1.结合θ∈(0,π),得. (2)由(1),得f(x)-g(x)=. ∴. ∵f(x)-g(x)在其定义域内为单调函数, ∴mx2-2x+m≥0或者mx2-2x+m≤0在[1,+∞)恒成立.mx2-2x+m≥0等价于m(1+x2)≥2x,即, 而,()max=1,∴m≥1.mx2-2x+m≤0等价于m(1+x2)≤2x,即 在[1,+∞)恒成立,而∈(0,1],m≤0. 综上,m的取值范围是(-∞,0]∪[1,+∞). (3)构造F(x)=f(x)-g(x)-h(x),. 当m≤0时,x∈[1,e],,, 所以在[1,e]上不存在一个x,使得f(x)-g(x)>h(x)成立. 当m>0时,. 因为x∈[1,e],所以2e-2x≥0,mx2+m>0, 所以(F(x))'>0在x∈[1,e]恒成立. 故F(x)在[1,e]上单调递增,,只要, 解得. 故m的取值范围是.
复制答案
考点分析:
相关试题推荐
如图1,在直角梯形ABCD中,∠ABC=∠DAB=90°,∠CAB=30°,BC=1,AD=CD,把△DAC沿对角线AC折起后如图2所示(点D记为点P),点P在平面ABC上的正投影E落在线段AB上,连接PB.
(1)求直线PC与平面PAB所成的角的大小;
(2)求二面角P-AC-B的大小的余弦值.

manfen5.com 满分网 查看答案
某单位为绿化环境,移栽了甲、乙两种大树各2株.设甲、乙两种大树移栽的成活率分别为manfen5.com 满分网manfen5.com 满分网,且各株大树是否成活互不影响.求移栽的4株大树中:
(1)两种大树各成活1株的概率;
(2)成活的株数ξ的分布列与期望.
查看答案
已知向量manfen5.com 满分网,设函数manfen5.com 满分网
(1)求f(x)的最小正周期与单调递减区间
(2)在△ABC中,a、b、c分别是角A、B、C的对边,若f(A)=4,b=1,△ABC的面积为manfen5.com 满分网,求a的值.
查看答案
已知曲线C:manfen5.com 满分网,给出以下结论:
①垂直于x轴的直线与曲线C只有一个交点
②直线y=kx+m(k,m∈R)与曲线C最多有三个交点
③曲线C关于直线y=-x对称
④若P1(x1,y1),P2(x2,y2)为曲线C上任意两点,则有manfen5.com 满分网
写出正确结论的序号    查看答案
编号为A,B,C,D,E的五个小球放在如图所示的五个盒子里,要求每个盒子只能放一个小球,且A不能放1,2号,B必须放在与A相邻的盒子中,则不同的放法有    种.
manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.