已知椭圆
+
=1(a>b>0)的左、右焦点分别是F
1(-c,0)、F
2(c,0),Q是椭圆外的动点,满足|
|=2a.点P是线段F
1Q与该椭圆的交点,点T在线段F
2Q上,并且满足
•
=0,|
|≠0.
(Ⅰ)设x为点P的横坐标,证明|
|=a+
x;
(Ⅱ)求点T的轨迹C的方程;
(Ⅲ)试问:在点T的轨迹C上,是否存在点M,使△F
1MF
2的面积S=b
2.若存在,求∠F
1MF
2的正切值;若不存在,请说明理由.
考点分析:
相关试题推荐
已知函数
在[1,+∞)上为增函数,且θ∈(0,π),
,m∈R.
(1)求θ的值;
(2)若f(x)-g(x)在[1,+∞)上为单调函数,求m的取值范围;
(3)设
,若在[1,e]上至少存在一个x
,使得f(x
)-g(x
)>h(x
)成立,求m的取值范围.
查看答案
如图1,在直角梯形ABCD中,∠ABC=∠DAB=90°,∠CAB=30°,BC=1,AD=CD,把△DAC沿对角线AC折起后如图2所示(点D记为点P),点P在平面ABC上的正投影E落在线段AB上,连接PB.
(1)求直线PC与平面PAB所成的角的大小;
(2)求二面角P-AC-B的大小的余弦值.
查看答案
某单位为绿化环境,移栽了甲、乙两种大树各2株.设甲、乙两种大树移栽的成活率分别为
和
,且各株大树是否成活互不影响.求移栽的4株大树中:
(1)两种大树各成活1株的概率;
(2)成活的株数ξ的分布列与期望.
查看答案
已知向量
,设函数
.
(1)求f(x)的最小正周期与单调递减区间
(2)在△ABC中,a、b、c分别是角A、B、C的对边,若f(A)=4,b=1,△ABC的面积为
,求a的值.
查看答案
已知曲线C:
,给出以下结论:
①垂直于x轴的直线与曲线C只有一个交点
②直线y=kx+m(k,m∈R)与曲线C最多有三个交点
③曲线C关于直线y=-x对称
④若P
1(x
1,y
1),P
2(x
2,y
2)为曲线C上任意两点,则有
写出正确结论的序号
.
查看答案