满分5 > 高中数学试题 >

设集合A={1,2},B={1,2,3},分别从集合A和B中随机取一个数a和b,...

设集合A={1,2},B={1,2,3},分别从集合A和B中随机取一个数a和b,确定平面上的一个点P(a,b),记“点P(a,b)落在直线x+y=n上”为事件Cn(2≤n≤5,n∈N),若事件Cn的概率最大,则n的所有可能值为( )
A.3
B.4
C.2和5
D.3和4
分别从集合A和B中随机取一个数a和b,组成一个有序数对,共有2×3中方法,要计算事件Cn的概率最大时n的所有可能值,要把题目中所有的情况进行分析求解,比较出n的所有可能值. 【解析】 事件Cn的总事件数为6.只要求出当n=2,3,4,5时的基本事件个数即可. 当n=2时,落在直线x+y=2上的点为(1,1); 当n=3时,落在直线x+y=3上的点为(1,2)、(2,1); 当n=4时,落在直线x+y=4上的点为(1,3)、(2,2); 当n=5时,落在直线x+y=5上的点为(2,3); 显然当n=3,4时,事件Cn的概率最大为, 故选D
复制答案
考点分析:
相关试题推荐
10个球中有一个红球,有放回的抽取,每次取出一球,直到第n次才取得k(k≤n)次红球的概率为( )
A.manfen5.com 满分网
B.manfen5.com 满分网
C.manfen5.com 满分网
D.manfen5.com 满分网
查看答案
数列{an}的各项均为正数,Sn为其前n项和,对于任意n∈N*,总有an,Sn,an2成等差数列.
(1)求数列{an}的通项公式;
(2)设数列{bn}的前n项和为Tn,且manfen5.com 满分网,求证:对任意实数x∈(1,e](e是常数,e=2.71828…)和任意正整数n,总有Tn<2;
(3)正数数列{cn}中,an+1=(cnn+1(n∈N*),求数列{cn}中的最大项.
查看答案
已知椭圆manfen5.com 满分网+manfen5.com 满分网=1(a>b>0)的左、右焦点分别是F1(-c,0)、F2(c,0),Q是椭圆外的动点,满足|manfen5.com 满分网|=2a.点P是线段F1Q与该椭圆的交点,点T在线段F2Q上,并且满足manfen5.com 满分网manfen5.com 满分网=0,|manfen5.com 满分网|≠0.
(Ⅰ)设x为点P的横坐标,证明|manfen5.com 满分网|=a+manfen5.com 满分网x;
(Ⅱ)求点T的轨迹C的方程;
(Ⅲ)试问:在点T的轨迹C上,是否存在点M,使△F1MF2的面积S=b2.若存在,求∠F1MF2的正切值;若不存在,请说明理由.

manfen5.com 满分网 查看答案
已知函数manfen5.com 满分网在[1,+∞)上为增函数,且θ∈(0,π),manfen5.com 满分网,m∈R.
(1)求θ的值;
(2)若f(x)-g(x)在[1,+∞)上为单调函数,求m的取值范围;
(3)设manfen5.com 满分网,若在[1,e]上至少存在一个x,使得f(x)-g(x)>h(x)成立,求m的取值范围.
查看答案
如图1,在直角梯形ABCD中,∠ABC=∠DAB=90°,∠CAB=30°,BC=1,AD=CD,把△DAC沿对角线AC折起后如图2所示(点D记为点P),点P在平面ABC上的正投影E落在线段AB上,连接PB.
(1)求直线PC与平面PAB所成的角的大小;
(2)求二面角P-AC-B的大小的余弦值.

manfen5.com 满分网 查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.