满分5 > 高中数学试题 >

已知在数列{an}中,a1=t,a2=t2,其中t>0,x=是函数f(x)=an...

已知在数列{an}中,a1=t,a2=t2,其中t>0,x=manfen5.com 满分网是函数f(x)=an-1x3-3[(t+1)an-an+1]x+1(n≥2)的一个极值点.
(1)求数列{an}的通项公式;
(2)若manfen5.com 满分网<t<2,bn=manfen5.com 满分网(n∈N*),求证:manfen5.com 满分网+manfen5.com 满分网+…+manfen5.com 满分网<2n-manfen5.com 满分网
(1)本题求数列的通项公式,关键是构造数列{an+1-an},再利用等比数列的通项公式求出即可,要注意对t的讨论. (2)已知bn,求出=(tn+t-n),,接下来的关键是利用t的范围,判断2n+2-n>tn+t-n,也就求出<(2n+2-n),从而求出++…+<2n-(1+),再利用均值不等式1+>2的值,即可证明. 【解析】 (1)由题意得:f′()=0, 即3an-1t-3[(t+1)an-an+1]=0 故an+1-an=t(an-an-1)(n≥2), 则当t≠1时,数列{an+1-an}是以t2-t为首项,t为公比的等比数列, 所以an+1-an=(t2-t)tn-1 由an=a1+(a2-a1)+(a3-a2)+…+(an-an-1) =t+(t2-t)[1+t+t2+…+tn-2] =t+(t2-t)•=tn 此式对t=1也成立,所以an=tn(n∈N*). (2)=(an+)=(tn+t-n), 因为<t<2,所以(2t)n>1,tn<2n. 则(2n+2-n)-(tn+t-n)=(2n-tn)[(2t)n-1]>0, 有<(2n+2-n), 故++…+<[(2+)+(22+)+…+(2n+)]=2n-(1+), ∵1+>2 ∴++…+<2n-=2n-即证.
复制答案
考点分析:
相关试题推荐
某商场开展促销活动,设计一种对奖券,号码从000000到999999.若号码的奇位数字是不同的奇数,偶位数字均为偶数时,为中奖号码,则中奖面(即中奖号码占全部号码的百分比)为    查看答案
如果不等式manfen5.com 满分网>(a-1)x的解集为A,且A⊆{x|0<x<2},那么实数a的取值范围是    查看答案
若过定点M(-1,0)且斜率为k的直线与圆x2+y2+4x-5=0在第一象限内的部分有交点,则k的取值范围是( )
A.0<k<manfen5.com 满分网
B.manfen5.com 满分网<k<0
C.0<k<manfen5.com 满分网
D.0<k<5
查看答案
定义在区间(-∞,+∞)的奇函数f(x)为增函数;偶函数g(x)在区间[0,+∞)的图象与f(x)的图象重合,设a>b>0,给出下列不等式:
①f(b)-f(-a)>g(a)-g(-b);
②f(b)-f(-a)<g(a)-g(-b);
③f(a)-f(-b)>g(b)-g(-a);
④f(a)-f(-b)<g(b)-g(-a),
其中成立的是( )
A.①与④
B.②与③
C.①与③
D.②与④
查看答案
在正n棱锥中,相邻两侧面所成的二面角的取值范围是( )
A.(manfen5.com 满分网π,π)
B.(manfen5.com 满分网π,π)
C.(0,manfen5.com 满分网
D.(manfen5.com 满分网π,manfen5.com 满分网π)
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.