满分5 > 高中数学试题 >

已知平面区域恰好被面积最小的圆C:(x-a)2+(y-b)2=r2及其内部所覆盖...

已知平面区域manfen5.com 满分网恰好被面积最小的圆C:(x-a)2+(y-b)2=r2及其内部所覆盖.
(1)试求圆C的方程.
(2)若斜率为1的直线l与圆C交于不同两点A,B满足CA⊥CB,求直线l的方程.
(1)根据题意可知平面区域表示的是三角形及其内部,且△OPQ是直角三角形,进而可推断出覆盖它的且面积最小的圆是其外接圆,进而求得圆心和半径,则圆的方程可得. (2)设直线l的方程是:y=x+b.根据CA⊥CB,可知圆心C到直线l的距离,进而求得b,则直线方程可得. 【解析】 (1)由题意知此平面区域表示的是以 O(0,0),P(4,0),Q(0,2)构成的三角形及其内部, 且△OPQ是直角三角形, 所以覆盖它的且面积最小的圆是其外接圆,故圆心是(2,1),半径是, 所以圆C的方程是(x-2)2+(y-1)2=5. (2)设直线l的方程是:y=x+b. 因为,所以圆心C到直线l的距离是, 即= 解得:b=-1. 所以直线l的方程是:y=x-1.
复制答案
考点分析:
相关试题推荐
如图,四边形ABCD为矩形,平面ABCD⊥平面ABE,BE=BC,F为CE上的一点,且BF⊥平面ACE.
(1)求证:AE⊥BE;
(2)求证:AE∥平面BFD.

manfen5.com 满分网 查看答案
已知|x|≤2,|y|≤2,点P的坐标为(x,y).
(I)求当x,y∈R时,P满足(x-2)2+(y-2)2≤4的概率;
(II)求当x,y∈Z时,P满足(x-2)2+(y-2)2≤4的概率.
查看答案
已知:A(5,0),B(0,5),C(cosα,sinα),α∈(0,π).
(1)若manfen5.com 满分网,求sin2α;
(2)若manfen5.com 满分网,求manfen5.com 满分网manfen5.com 满分网的夹角.
查看答案
manfen5.com 满分网如图所示,圆O上一点C在直径AB上的射影为D,CD=4,BD=8,则圆O的半径等于    查看答案
已知圆的极坐标方程ρ=2cosθ,直线的极坐标方程为ρcosθ-2ρsinθ+7=0,则圆心到直线距离为     查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.