满分5 > 高中数学试题 >

如图,已知AP是⊙O的切线,P为切点,AC是⊙O的割线,与⊙O交于B,C两点,圆...

manfen5.com 满分网如图,已知AP是⊙O的切线,P为切点,AC是⊙O的割线,与⊙O交于B,C两点,圆心O在∠PAC的内部,点M是BC的中点.
(Ⅰ)证明A,P,O,M四点共圆;
(Ⅱ)求∠OAM+∠APM的大小.
(1)要证明四点共圆,可根据圆内接四边形判定定理:四边形对角互补,而由AP是⊙O的切线,P为切点,易得∠APO=90°,故解答这题的关键是证明,∠AMO=90°,根据垂径定理不难得到结论. (2)由(1)的结论可知,∠OPM+∠APM=90°,只要能说明∠OPM=∠OAM即可得到结论. 证明:(Ⅰ)连接OP,OM. 因为AP与⊙O相切于点P,所以OP⊥AP. 因为M是⊙O的弦BC的中点,所以OM⊥BC. 于是∠OPA+∠OMA=180°. 由圆心O在∠PAC的内部,可知四边形M的对角互补, 所以A,P,O,M四点共圆. 【解析】 (Ⅱ)由(Ⅰ)得A,P,O,M四点共圆,所以∠OAM=∠OPM. 由(Ⅰ)得OP⊥AP. 由圆心O在∠PAC的内部,可知∠OPM+∠APM=90°. 又∵A,P,O,M四点共圆 ∴∠OPM=∠OAM 所以∠OAM+∠APM=90°.
复制答案
考点分析:
相关试题推荐
设函数f(x)=ln(x+a)+x2
(I)若当x=-1时,f(x)取得极值,求a的值,并讨论f(x)的单调性;
(II)若f(x)存在极值,求a的取值范围,并证明所有极值之和大于manfen5.com 满分网
查看答案
如图,面积为S的正方形ABCD中有一个不规则的图形M,可按下面方法估计M的面积:在正方形ABCD中随机投掷n个点,若n个点中有m个点落入M中,则M的面积的估计值为manfen5.com 满分网.假设正方形ABCD的边长为2,M的面积为1,并向正方形ABCD中随机投掷10000个点,以X表示落入M中的点的数目.
(I)求X的均值EX;
(II)求用以上方法估计M的面积时,M的面积的估计值与实际值之差在区间(-0.03,0.03)内的概率.
附表:manfen5.com 满分网
manfen5.com 满分网

manfen5.com 满分网 查看答案
在平面直角坐标系xOy中,经过点manfen5.com 满分网且斜率为k的直线l与椭圆manfen5.com 满分网有两个不同的交点P和Q.
(Ⅰ)求k的取值范围;
(Ⅱ)设椭圆与x轴正半轴、y轴正半轴的交点分别为A,B,是否存在常数k,使得向量manfen5.com 满分网manfen5.com 满分网共线?如果存在,求k值;如果不存在,请说明理由.
查看答案
manfen5.com 满分网如图,在三棱锥S-ABC中,侧面SAB与侧面SAC均为等边三角形,∠BAC=90°,O为BC中点.
(Ⅰ)证明:SO⊥平面ABC;
(Ⅱ)求二面角A-SC-B的余弦值.
查看答案
如图,测量河对岸的塔高AB时,可以选与塔底B在同一水平面内的两个测点C与D.现测得∠BCD=α,∠BDC=β,CD=s,并在点C测得塔顶A的仰角为θ,求塔高AB.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.