满分5 > 高中数学试题 >

如图,在三棱柱ABC-A1B1C1中,AB⊥侧面BB1C1C,E为棱CC1上异于...

如图,在三棱柱ABC-A1B1C1中,AB⊥侧面BB1C1C,E为棱CC1上异于C、C1的一点,EA⊥EB1,已知AB=manfen5.com 满分网,BB1=2,BC=1,∠BCC1=manfen5.com 满分网,求:
(Ⅰ)异面直线AB与EB1的距离;
(Ⅱ)二面角A-EB1-A1的平面角的正切值.

manfen5.com 满分网
(1)先证明BE是异面直线AB与EB1的公垂线,再利用平面几何知识结合方程思想及解三角形的方法求出BE的长即可; (2)过E作EG∥B1A1再证明∠AEG是二面角A-EB1-A1的平面角,利用平行证得∠AEG=∠BAE,只要求出tan∠BAE即得. 【解析】 (Ⅰ)因AB⊥面BB1C1C,故AB⊥BE. 又EB1⊥EA,且EA在面BCC1B1内的射影为EB. 由三垂线定理的逆定理知EB1⊥BE,因此BE是异面直线AB与EB1的公垂线, 在平行四边形BCC1B1中,设EB=x,则EB1=, 作BD⊥CC1,交CC1于D,则BD=BC•sin=. 在△BEB1中,由面积关系得x=•2•,即(x2-1)(x2-3)=0. 解得x=±1,x=±(负根舍去) 当x=时,在△BCE中,CE2+12-2CE•cos=3, 解之得CE=2,故此时E与C1重合,由题意舍去x=. 因此x=1,即异面直线AB与EB1的距离为1. (Ⅱ)过E作EG∥B1A1,则GE⊥面BCC1B,故GE⊥EB1且GE在圆A1B1E内, 又已知AE⊥EB1 故∠AEG是二面角A-EB1-A1的平面角. 因EG∥B1A1∥BA,∠AEG=∠BAE,故tanAEG===.
复制答案
考点分析:
相关试题推荐
已知a∈R,讨论函数f(x)=ex(x2+ax+a+1)的极值点的个数.
查看答案
在一次购物抽奖活动中,假设某10张券中有一等奖券1张,可获价值50元的奖品;有二等奖券3张,每张可获价值10元的奖品;其余6张没有奖,某顾客从此10张券中任抽2张,求:
(Ⅰ)该顾客中奖的概率;
(Ⅱ)该顾客获得的奖品总价值ξ(元)的概率分布列和期望Eξ.
查看答案
若函数f(x)=manfen5.com 满分网-asinmanfen5.com 满分网cos(π-manfen5.com 满分网)的最大值为2,试确定常数a的值.
查看答案
连接抛物线上任意四点组成的四边形可能是    (填写所有正确选项的序号).
①菱形②有3条边相等的四边形③梯形
④平行四边形⑤有一组对角相等的四边形 查看答案
某轻轨列车有4节车厢,现有6位乘客准备乘坐,设每一位乘客进入每节车厢是等可能的,则这6位乘客进入各节车厢的人数恰好为0,1,2,3的概率为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.