满分5 > 高中数学试题 >

设( ) A.0 B.1 C.2 D.3

manfen5.com 满分网( )
A.0
B.1
C.2
D.3
考查对分段函数的理解程度,f(2)=log3(22-1)=1,所以f(f(2))=f(1)=2e1-1=2. 【解析】 f(f(2))=f(log3(22-1))=f(1)=2e1-1=2,故选C.
复制答案
考点分析:
相关试题推荐
“a+b>2c”的一个充分条件是( )
A.a>c或b>c
B.a>c且b<c
C.a>c且b>c
D.a>c或b<c
查看答案
若(a-2i)i=b-i,其中a、b∈R,i是虚数单位,则a2+b2=( )
A.0
B.2
C.manfen5.com 满分网
D.5
查看答案
已知双曲线C:manfen5.com 满分网的一个焦点是F2(2,0),且manfen5.com 满分网
(1)求双曲线C的方程;
(2)设经过焦点F2的直线l的一个法向量为(m,1),当直线l与双曲线C的右支相交于A,B不同的两点时,求实数m的取值范围;并证明AB中点M在曲线3(x-1)2-y2=3上.
(3)设(2)中直线l与双曲线C的右支相交于A,B两点,问是否存在实数m,使得∠AOB为锐角?若存在,请求出m的范围;若不存在,请说明理由.
查看答案
在平行四边形OABC中,已知过点C的直线与线段OA,OB分别相交于点M,N.若manfen5.com 满分网
(1)求证:x与y的关系为manfen5.com 满分网
(2)设manfen5.com 满分网,定义在R上的偶函数F(x),当x∈[0,1]时F(x)=f(x),且函数F(x)图象关于直线x=1对称,求证:F(x+2)=F(x),并求x∈[2k,2k+1](k∈N)时的解析式;
(3)在(2)的条件下,不等式F(x)<-x+a在x∈[2k,2k+1](k∈N)上恒成立,求实数a的取值范围.
查看答案
设数列{an}中,若an+1=an+an+2,(n∈N*),则称数列{an}为“凸数列”.
(1)设数列{an}为“凸数列”,若a1=1,a2=-2,试写出该数列的前6项,并求出该6项之和;
(2)在“凸数列”{an}中,求证:an+6=an,n∈N*
(3)设a1=a,a2=b,若数列{an}为“凸数列”,求数列前n项和Sn
查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.