满分5 > 高中数学试题 >

(Ⅰ)①证明两角和的余弦公式Cα+β:cos(α+β)=cosαcosβ-sin...

(Ⅰ)①证明两角和的余弦公式Cα+β:cos(α+β)=cosαcosβ-sinαsinβ;②由Cα+β推导两角和的正弦公式Sα+β:sin(α+β)=sinαcosβ+cosαsinβ.
(Ⅱ)已知△ABC的面积manfen5.com 满分网,且manfen5.com 满分网,求cosC.
(I)①建立单位圆,在单位圆中作出角,找出相应的单位圆上的点的坐标,由两点间距离公式建立方程化简整理既得;②由诱导公式cos[-(α+β)]=sin(α+β)变形整理可得. (II),求出角A的正弦,再由,用cosC=-cos(A+B)求解即可. 【解析】 (1)①如图,在直角坐标系xOy内做单位圆O,并作出角α、β与-β,使角α的始边为Ox,交⊙O于点P1, 终边交⊙O于P2; 角β的始边为OP2,终边交⊙O于P3;角-β的始边为OP1,终边交⊙O于P4. 则P1(1,0),P2(cosα,sinα) P3(cos(α+β),sin(α+β)),P4(cos(-β),sin(-β)) 由P1P3=P2P4及两点间的距离公式,得 [cos(α+β)-1]2+sin2(α+β)=[cos(-β)-cosα]2+[sin(-β)-sinα]2 展开并整理得:2-2cos(α+β)=2-2(cosαcosβ-sinαsinβ) ∴cos(α+β)=cosαcosβ-sinαsinβ.(4分) ②由①易得cos(-α)=sinα,sin(-α)=cosα sin(α+β)=cos[-(α+β)]=cos[(-α)+(-β)] =cos(-α)cos(-β)-sin(-α)sin(-β) =sinαcosβ+cosαsinβ(6分) (2)由题意,设△ABC的角B、C的对边分别为b、c 则S=bcsinA==bccosA=3>0 ∴A∈(0,),cosA=3sinA 又sin2A+cos2A=1,∴sinA=,cosA= 由题意,cosB=,得sinB= ∴cos(A+B)=cosAcosB-sinAsinB= 故cosC=cos[π-(A+B)]=-cos(A+B)=-(12分)
复制答案
考点分析:
相关试题推荐
△ABC中,D为边BC上的一点,BD=33,sinB=manfen5.com 满分网,cos∠ADC=manfen5.com 满分网,求AD.
查看答案
已知manfen5.com 满分网,化简:lg+lg[manfen5.com 满分网cos(x-manfen5.com 满分网)-lg(1+sin2x).
查看答案
已知α为第三象限的角,manfen5.com 满分网,则manfen5.com 满分网=    查看答案
已知α为第二象限的角,manfen5.com 满分网,则tan2α=    查看答案
已知α是第二象限的角,tanα=manfen5.com 满分网,则cosα=    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.