登录
|
注册
返回首页
联系我们
在线留言
满分5
>
高中数学试题
>
如图,正三棱柱ABC-A1B1C1的所有棱长都为2,D为CC1中点. (1)求证...
如图,正三棱柱ABC-A
1
B
1
C
1
的所有棱长都为2,D为CC
1
中点.
(1)求证:AB
1
⊥面A
1
BD;
(2)求二面角A-A
1
D-B的大小;
(3)求点C到平面A
1
BD的距离.
法一:(1)要证AB1⊥面A1BD,只需证明直线AB1垂直面A1BD内的两条相交直线B1O、AB1即可; (2)设AB1与A1B交于点G,在平面A1BD中,作GF⊥A1D于F,连接AF, 说明∠AFG为二面角A-A1D-B的平面角,然后解三角形,求二面角A-A1D-B的大小; (3)利用等体积法,求点C到平面A1BD的距离. 法二:建立空间直角坐标系,求出相关向量,利用向量的数量积等于0证明垂直, (1)求证:AB1⊥面A1BD; 向量共线证明平行,向量数量积求出二面角的大小 (2)求二面角A-A1D-B的大小; 距离公式求出距离,解答(3)求点C到平面A1BD的距离. 证明:法一:(Ⅰ)取BC中点O,连接AO.∵△ABC为正三角形,∴AO⊥BC. ∵正三棱柱ABC-A1B1C1中,平面ABC⊥平面BCC1B1,∴AO⊥平面BCC1B1. 连接B1O,在正方形BB1C1C中,O,D分别为BC,CC1的中点,∴B1O⊥BD,∴AB1⊥BD. 在正方形ABB1A1中,AB1⊥A1B,∴AB1⊥平面A1BD. (Ⅱ)设AB1与A1B交于点G,在平面A1BD中,作GF⊥A1D于F,连接AF, 由(Ⅰ)得AB1⊥平面A1BD.∴AF⊥A1D,∴∠AFG为二面角A-A1D-B的平面角. 在△AA1D中,由等面积法可求得, 又∵, ∴. 所以二面角A-A1D-B的大小为. (Ⅲ)△A1BD中,,S△BCD=1. 在正三棱柱中,A1到平面BCC1B1的距离为=. 设点C到平面A1BD的距离为d. 由得,∴.∴点C到平面C的距离为. 法二:(Ⅰ)取BC中点O,连接AO. ∵△ABC为正三角形, ∴AO⊥BC. ∵在正三棱柱ABC-A1B1C1中,平面ABC⊥平面BCC1B1, ∴AO⊥平面BCC1B1. 取B1C1中点O1,以O为原点,,,的方向为x,y,z轴的正方向建立空间直角坐标系, 则B(1,0,0),D(-1,1,0),,,B1(1,2,0), ∴,,. ∵,, ∴,. ∴AB1⊥平面A1BD. (Ⅱ)设平面A1AD的法向量为n=(x,y,z).,. ∵,, ∴∴∴ 令z=1得为平面A1AD的一个法向量. 由(Ⅰ)知AB1⊥平面A1BD,∴为平面A1BD的法向量.cos<n,. ∴二面角A-A1D-B的大小为. (Ⅲ)由(Ⅱ),为平面A1BD法向量,∵. ∴点C到平面A1BD的距离.
复制答案
考点分析:
相关试题推荐
在△ABC中,tanA=
,tanB=
.
(I)求角C的大小;
(II)若AB边的长为
,求BC边的长.
查看答案
中学数学中存在许多关系,比如“相等关系”、“平行关系”等等、如果集合A中元素之间的一个关系“-”满足以下三个条件:
(1)自反性:对于任意a∈A,都有a-a;
(2)对称性:对于a,b∈A,若a-b,则有b-a;
(3)对称性:对于a,b,c∈A,若a-b,b-c,则有a-c、
则称“-”是集合A的一个等价关系、例如:“数的相等”是等价关系,而“直线的平行”不是等价关系(自反性不成立)、请你再列出两个等价关系:
.
查看答案
两封信随机投入A、B、C三个空邮箱,则A邮箱的信件数ξ的数学期望E
ξ
=
;
查看答案
已知正方形ABCD,则以A、B为焦点,且过C、D两点的椭圆的离心率为
.
查看答案
已知实数x、y满足
,则z=2x-y的取值范围是
.
查看答案
试题属性
题型:解答题
难度:中等
Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.