设椭圆
的离心率
,右焦点到直线
的距离
,O为坐标原点.
(I)求椭圆C的方程;
(II)过点O作两条互相垂直的射线,与椭圆C分别交于A,B两点,证明点O到直线AB的距离为定值,并求弦AB长度的最小值.
考点分析:
相关试题推荐
已知函数f(x)=-e
x+kx+1,x∈R.
(I)若k=2e,试确定函数f(x)的单调区间;
(II)若k>0,且对于任意x∈R,f(|x|)<1恒成立,试确定实数k的取值范围.
查看答案
数列{a
n}的前n项和为
.
(I)(求{a
n}的通项公式;
(II)若数列{c
n}满足
,且{c
n}的前n项和为T
n,求T
n.
查看答案
如图,在直三棱柱ABC-A
1B
1C
1中,AB⊥BC,P为A
1C
1的中点,AB=BC=kPA.
(I)求三棱锥P-AB
1C与三棱锥C
1-AB
1P的体积之比;
(II)当k为何值时,直线PA⊥B
1C.
查看答案
现有8名奥运会志愿者,其中志愿者A
1,A
2,A
3通晓日语,B
1,B
2,B
3通晓俄语,C
1,C
2通晓韩语.从中选出通晓日语、俄语和韩语的志愿者各1名,组成一个小组.
(Ⅰ)求A
1被选中的概率;
(Ⅱ)求B
1和C
1不全被选中的概率.
查看答案
给出下列四个命题:
①“∃x∈R,x
2-x>0”的否定是“∀x∈R,x
2-x≤0”;
②对于任意实数x,有f(-x)=-f(x),g(-x)=g(x),且x>0时,f′(x)>0,g′(x)>0,
则x<0时,f′(x)>g′(x);
③函数
是偶函数;
④若对∀x∈R,函数f(x)满足f(x+2)=-f(x),则4是该函数的一个周期,
其中所有真命题的序号为
(注:将真命题的序号全部填上)
查看答案