满分5 > 高中数学试题 >

若a、b、c是常数,则“a>0且b2-4ac<0”是“对任意x∈R,有ax2+b...

若a、b、c是常数,则“a>0且b2-4ac<0”是“对任意x∈R,有ax2+bx+c>0”的( )
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件
要判断“a>0且b2-4ac<0”是“对任意x∈R,有ax2+bx+c>0”什么条件,我们要先假设“a>0且b2-4ac<0”成立,然后判断“对任意x∈R,有ax2+bx+c>0”是否成立,然后再假设“对任意x∈R,有ax2+bx+c>0”成立,再判断“a>0且b2-4ac<0”是否成立,然后根据结论,结合充要充要条件的定义,即可得到结论. 【解析】 若a>0且b2-4ac<0,则对任意x∈R,有ax2+bx+c>0, 反之,则不一定成立.如a=0,b=0且c>0时,也有对任意x∈R,有ax2+bx+c>0. 故“a>0且b2-4ac<0”是“对任意x∈R,有ax2+bx+c>0”的充分不必要条件 故选A
复制答案
考点分析:
相关试题推荐
已知manfen5.com 满分网为非零的平面向量.甲:manfen5.com 满分网,乙:manfen5.com 满分网,则( )
A.甲是乙的充分条件但不是必要条件
B.甲是乙的必要条件但不是充分条件
C.甲是乙的充要条件
D.甲既不是乙的充分条件也不是乙的必要条件
查看答案
ac2>bc2是a>b成立的( )
A.充分而不必要条件
B.充要条件
C.必要而不充分条件
D.既不充分也不必要条件
查看答案
一位游客欲参观上海世博会中甲、乙、丙这3个展览馆,又该游客参观甲、乙、丙这3个展览馆的概率分别是0.4,0.5,0.6,且是否参观哪个展览馆互不影响.设ξ表示该游客离开上海世博会时参观的展览馆数与没有参观的展览馆数之差的绝对值.
(Ⅰ)求ξ的概率分布及数学期望;
(Ⅱ)记“函数f(x)=x2-3ξx+1在区间[2,+∞)上单调递增”为事件A,求事件A的概率.
查看答案
manfen5.com 满分网已知四棱锥P-ABCD的底面为直角梯形,AB∥DC,∠DAB=90°,PA⊥底面ABCD,且PA=AD=DC=manfen5.com 满分网AB=1,M是PB的中点.
(Ⅰ)证明:面PAD⊥面PCD;
(Ⅱ)求AC与PB所成的角;
(Ⅲ)求面AMC与面BMC所成二面角的大小.
查看答案
如图,AB是⊙O的直径,C、F为⊙O上的点,且CA平分∠BAF,过点C作CD⊥AF交AF的延长线于点D.求证:DC是⊙O的切线.

manfen5.com 满分网 查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.