设a∈R,函数f(x)=e
-x(a+ax-x
2)(e是自然对数的底数).
(Ⅰ)若a=1,求曲线y=f(x)在点(-1,f(-1))处的切线方程;
(Ⅱ)判断f(x)在R上的单调性.
考点分析:
相关试题推荐
已知:四棱锥P-ABCD中,PA⊥平面ABCD,底面ABCD是菱形,且PA=AB=2,∠ABC=60°,BC、PD的中点分别为E、F.
(Ⅰ)求证BC⊥PE;
(Ⅱ)求二面角F-AC-D的余弦值;
(Ⅲ)在线段AB上是否存在一点G,使得AF||平面PCG?若存在指出G在AB上位置并给以证明,若不存在,请说明理由.
查看答案
甲、乙两位同学参加数学竞赛培训,现分别从他们在培训期间参加的若干次预赛成绩中随机抽取5次,绘制成茎叶图如下:
(Ⅰ)现要从中选派一人参加数学竞赛,从统计学的角度考虑,你认为选派哪位学生参加合适?请说明理由;
(Ⅱ)若将频率视为概率,对乙同学在今后的3次数学竞赛成绩进行预测,记这3次成绩中高于80分的次数为X,求X的分布列及数学期望EX.
查看答案
已知函数f(x)=sinx+cosx,x∈R.
(Ⅰ)求
的值;
(Ⅱ)如果函数g(x)=f(x)f(-x),求函数g(x)的最小正周期和最大值;
查看答案
如图,n
2(n≥4)个正数排成n行n列方阵:符号a
ij(1≤i,j≤n)表示位于第i行第j列的正数.已知每一行的数成等差数列,每一列的数成等比数列,且各列数的公比都等于q.若
,a
24=1,
,则q=
,a
ij=
.
查看答案
已知双曲线
,直线l过其左焦点F
1,交双曲线的左支于A、B两点,且|AB|=4,F
2为双曲线的右焦点,△ABF
2的周长为20,则此双曲线的离心率e=
.
查看答案