满分5 > 高中数学试题 >

某校从参加高一年级期中考试的学生中随机抽取60名学生,将其数学成绩(均为整数)分...

manfen5.com 满分网某校从参加高一年级期中考试的学生中随机抽取60名学生,将其数学成绩(均为整数)分成六段[40,50),[50,60)…[90,100]后得到如下部分频率分布直方图.观察图形的信息,回答下列问题:
(Ⅰ)求分数在[70,80)内的频率,并补全这个频率分布直方图;
(Ⅱ)统计方法中,同一组数据常用该组区间的中点值作为代表,据此估计本次考试的平均分;
(Ⅲ)用分层抽样的方法在分数段为[60,80)的学生中抽取一个容量为6的样本,将该样本看成一个总体,从中任取2人,求至多有1人在分数段[70,80)的概率.
(Ⅰ)频率分布直方图中,小矩形的面积等于这一组的频率,而频率的和等于1,可求出分数在[70,80)内的频率,即可求出矩形的高,画出图象即可; (Ⅱ)同一组数据常用该组区间的中点值作为代表,将中点值与每一组的频率相乘再求出它们的和即可求出本次考试的平均分; (Ⅲ)先计算[60,70)、[70,80)分数段的人数,然后按照比例进行抽取,设从样本中任取2人,至多有1人在分数段[70,80)为事件A,然后列出基本事件空间包含的基本事件,以及事件A包含的基本事件,最后将包含事件的个数求出题目比值即可. 【解析】 (Ⅰ)分数在[70,80)内的频率为:1-(0.010+0.015+0.015+0.025+0.005)×10=1-0.7=0.3, 故, 如图所示:(4分)(求频率(2分),作图2分) (Ⅱ)平均分为:=45×0.1+55×0.15+65×0.15+75×0.3+85×0.25+95×0.05=71.(6分) (Ⅲ)由题意,[60,70)分数段的人数为:0.15×60=9人;(7分) [70,80)分数段的人数为:0.3×60=18人;(8分) ∵在[60,80)的学生中抽取一个容量为6的样本, ∴[60,70)分数段抽取2人,分别记为m,n;[70,80)分数段抽取4人,分别记为a,b,c,d; 设从样本中任取2人,至多有1人在分数段[70,80)为事件A, 则基本事件空间包含的基本事件有:(m,n)、(m,a)、(m,b)、(m,c)、(m,d)、(c,d)共15种,(10分) 则事件A包含的基本事件有:(m,n)、(m,a)、(m,b)、(m,c)、(m,d)、(n,a)、(n,b)、(n,c)、(n,d)共9种,(11分) ∴.(12分)
复制答案
考点分析:
相关试题推荐
一个袋中有4个大小相同的小球,其中红球1个,白球2个,黑球1个,现从袋中有放回地取球,每次随机取一个,求:
(Ⅰ)连续取两次都是白球的概率;
(Ⅱ)若取一个红球记2分,取一个白球记1分,取一个黑球记0分,连续取三次分数之和为4分的概率.
查看答案
已知直线l1:x-2y-1=0,直线l2:ax-by+1=0,其中a,b∈{1,2,3,4,5,6}.
(1)求直线l1∩l2=∅的概率;
(2)求直线l1与l2的交点位于第一象限的概率.
查看答案
已知数列{an}满足8an+1=an2+m(n,m∈N*),且a1=1.
(1)求证:当m=12时,1≤an<an+1<2;
(2)若an<4对任意的n≥1(n∈N)恒成立,求m的最大值.
查看答案
如图,ABCD是一块边长为2a的正方形铁板,剪掉四个阴影部分的小正方形,沿虚线折叠后,焊接成一个无盖的长方体水箱,若水箱的高度x与底面边长的比不超过常数k(k>0).
(1)写出水箱的容积V与水箱高度x的函数表达式,并求其定义域;
(2)当水箱高度x为何值时,水箱的容积V最大,并求出其最大值.

manfen5.com 满分网 查看答案
已知抛物线C1:y2=4x的焦点与椭圆C2manfen5.com 满分网的右焦点F2重合,F1是椭圆的左焦点.
(1)在△ABC中,若A(-4,0),B(0,-3),点C在抛物线y2=4x上运动,求△ABC重心G的轨迹方程;
(2)若P是抛物线C1与椭圆C2的一个公共点,且∠PF1F2=α,∠PF2F1=β,求cosα•cosβ的值及△PF1F2的面积.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.