设椭圆
的离心率
,右焦点到直线
的距离
,O为坐标原点.
(I)求椭圆C的方程;
(II)过点O作两条互相垂直的射线,与椭圆C分别交于A,B两点,证明点O到直线AB的距离为定值,并求弦AB长度的最小值.
考点分析:
相关试题推荐
已知函数f(x)=x
3+mx
2+nx-2的图象过点(-1,-6),且函数g(x)=f′(x)+6x的图象关于y轴对称.
(Ⅰ)求m、n的值及函数y=f(x)的单调区间;
(Ⅱ)若a>0,求函数y=f(x)在区间(a-1,a+1)内的极值.
查看答案
上海世博会深圳馆1号作品《大芬丽莎》是由大芬村507名画师集体创作的999幅油画组合而成的
世界名画《蒙娜丽莎》,因其诞生于大芬村,因此被命名为《大芬丽莎》.某部门从参加创作的507名画师中随机抽出100名画师,测得画师年龄情况如表所示.
分组 (单位:岁) | 频数 | 频率 |
[20,25) | 5 | 0.050 |
[25,30) | ① | 0.200 |
[30,35) | 35 | ② |
[35,40) | 30 | 0.300 |
[40,45] | 10 | 0.100 |
合计 | 100 | 1.00 |
(Ⅰ)频率分布表中的①、②位置应填什么数据?并在答题卡中补全频率分布直方图,再根据频率分布直方图估计这507个画师中年龄在[30,35)岁的人数(结果取整数);
(Ⅱ)在抽出的100名画师中按年龄再采用分层抽样法抽取20人参加上海世博会深圳馆志愿者活动,其中选取2名画师担任解说员工作,记这2名画师中“年龄低于30岁”的人数为ξ,求ξ的分布列及数学期望.
查看答案
已知三棱柱ABC-A
1B
1C
1的侧棱垂直于底面,∠BAC=90°,AB=AA
1=2,AC=1,M,N分别是A
1B
1,BC的中点.
(Ⅰ)证明:MN∥平面ACC
1A
1;
(II)求二面角M-AN-B的余弦值.
查看答案
如图,在△ABC中,AC=2,BC=1,
.
(1)求AB的值;
(2)求sin(2A+C)的值.
查看答案
线段C:y=x+2(0≤x≤2)两端分别为M、N,且NA⊥x轴于点A.把线段OA分成n等份,以每一段为边作矩形,使与x轴平行的边一个端点在C上,另一端点在C的下方(如图),设这n个矩形的面积之和为S
n,则S
n=
.
查看答案