满分5 > 高中数学试题 >

设椭圆的离心率,右焦点到直线的距离,O为坐标原点. (I)求椭圆C的方程; (I...

设椭圆manfen5.com 满分网的离心率manfen5.com 满分网,右焦点到直线manfen5.com 满分网的距离manfen5.com 满分网,O为坐标原点.
(I)求椭圆C的方程;
(II)过点O作两条互相垂直的射线,与椭圆C分别交于A,B两点,证明点O到直线AB的距离为定值,并求弦AB长度的最小值.
(I)利用离心率求得a和c的关系式,同时利用点到直线的距离求得a,b和c的关系最后联立才求得a和b,则椭圆的方程可得. (II)设出A,B和直线AB的方程与椭圆方程联立消去y,利用韦达定理表示出x1+x2和x1x2,利用OA⊥OB推断出x1x2+y1y2=0, 求得m和k的关系式,进而利用点到直线的距离求得O到直线AB的距离为定值,进而利用基本不等式求得OA=OB时AB长度最小,最后根据求得AB的坐标值. 【解析】 (I)由,∴. 由右焦点到直线的距离为, 得:, 解得. 所以椭圆C的方程为. (II)设A(x1,y1),B(x2,y2), 直线AB的方程为y=kx+m, 与椭圆联立消去y得3x2+4(k2x2+2kmx+m2)-12=0,. ∵OA⊥OB,∴x1x2+y1y2=0, ∴x1x2+(kx1+m)(kx2+m)=0. 即(k2+1)x1x2+km(x1+x2)+m2=0,∴, 整理得7m2=12(k2+1) 所以O到直线AB的距离.为定值 ∵OA⊥OB,∴OA2+OB2=AB2≥2OA•OB, 当且仅当OA=OB时取“=”号. 由, ∴, 即弦AB的长度的最小值是.
复制答案
考点分析:
相关试题推荐
已知函数f(x)=x3+mx2+nx-2的图象过点(-1,-6),且函数g(x)=f′(x)+6x的图象关于y轴对称.
(Ⅰ)求m、n的值及函数y=f(x)的单调区间;
(Ⅱ)若a>0,求函数y=f(x)在区间(a-1,a+1)内的极值.
查看答案
manfen5.com 满分网上海世博会深圳馆1号作品《大芬丽莎》是由大芬村507名画师集体创作的999幅油画组合而成的
世界名画《蒙娜丽莎》,因其诞生于大芬村,因此被命名为《大芬丽莎》.某部门从参加创作的507名画师中随机抽出100名画师,测得画师年龄情况如表所示.
分组
(单位:岁)
频数频率
[20,25)50.050
[25,30)0.200
[30,35)35
[35,40)300.300
[40,45]100.100
合计1001.00
(Ⅰ)频率分布表中的①、②位置应填什么数据?并在答题卡中补全频率分布直方图,再根据频率分布直方图估计这507个画师中年龄在[30,35)岁的人数(结果取整数);
(Ⅱ)在抽出的100名画师中按年龄再采用分层抽样法抽取20人参加上海世博会深圳馆志愿者活动,其中选取2名画师担任解说员工作,记这2名画师中“年龄低于30岁”的人数为ξ,求ξ的分布列及数学期望.
查看答案
已知三棱柱ABC-A1B1C1的侧棱垂直于底面,∠BAC=90°,AB=AA1=2,AC=1,M,N分别是A1B1,BC的中点.
(Ⅰ)证明:MN∥平面ACC1A1
(II)求二面角M-AN-B的余弦值.

manfen5.com 满分网 查看答案
如图,在△ABC中,AC=2,BC=1,manfen5.com 满分网
(1)求AB的值;
(2)求sin(2A+C)的值.

manfen5.com 满分网 查看答案
线段C:y=x+2(0≤x≤2)两端分别为M、N,且NA⊥x轴于点A.把线段OA分成n等份,以每一段为边作矩形,使与x轴平行的边一个端点在C上,另一端点在C的下方(如图),设这n个矩形的面积之和为Sn,则Sn=   
manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.