满分5 > 高中数学试题 >

已知函数f(x)=x2+(x≠0,常数a∈R). (1)讨论函数f(x)的奇偶性...

已知函数f(x)=x2+manfen5.com 满分网(x≠0,常数a∈R).
(1)讨论函数f(x)的奇偶性,并说明理由;
(2)若函数f(x)在[2,+∞)上为增函数,求实数a的取值范围.
(1)x2为偶函数,欲判函数f(x)=x2+的奇偶性,只需判定的奇偶性,讨论a判定就可. (2)处理函数的单调性问题通常采用定义法好用. 【解析】 (1)当a=0时,f(x)=x2 对任意x∈(-∞,0)∪(0,+∞),有f(-x)=(-x)2=x2=f(x), ∴f(x)为偶函数. 当a≠0时,f(x)=x2+(x≠0,常数a∈R), 取x=±1,得f(-1)+f(1)=2≠0, f(-1)-f(1)=-2a≠0, ∴f(-1)≠-f(1),f(-1)≠f(1). ∴函数f(x)既不是奇函数也不是偶函数. (2)设2≤x1<x2, f(x1)-f(x2)==[x1x2(x1+x2)-a], 要使函数f(x)在x∈[2,+∞)上为增函数, 必须f(x1)-f(x2)<0恒成立. ∵x1-x2<0,x1x2>4, 即a<x1x2(x1+x2)恒成立. 又∵x1+x2>4,∴x1x2(x1+x2)>16, ∴a的取值范围是(-∞,16].
复制答案
考点分析:
相关试题推荐
已知函数f(x)=manfen5.com 满分网(a、b、c∈Z)是奇函数,又f(1)=2,f(2)<3,求a、b、c的值.
查看答案
定义在R上的偶函数f(x)满足f(x+1)=-f(x),且在[-1,0]上是增函数,给出下列关于f(x)的判断:
①f(x)是周期函数;
②f(x)关于直线x=1对称;
③f(x)在[0,1]上是增函数;
④f(x)在[1,2]上是减函数;
⑤f(2)=f(0),
其中正确的序号是    查看答案
已知函数f(x)是定义在R上的偶函数,且满足f(x+1)+f(x)=3,当x∈[0,1]时,f(x)=2-x,则f(-2 009.9)=    查看答案
设函数f(x)是定义在R上的奇函数,若当x∈(0,+∞)时,f(x)=lg x,则满足f(x)>0的x的取值范围是    查看答案
已知f(x)=ln(manfen5.com 满分网),则下列正确的是( )
A.非奇非偶函数,在(0,+∞)上为增函数
B.奇函数,在R上为增函数
C.非奇非偶函数,在(0,+∞)上为减函数
D.偶函数,在R上为减函数
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.