满分5 > 高中数学试题 >

若定义在R上的函数f(x)对任意的x1,x2∈R,都有f(x1+x2)=f(x1...

若定义在R上的函数f(x)对任意的x1,x2∈R,都有f(x1+x2)=f(x1)+f(x2)-1成立,且当x>0时,f(x)>1.
(1)求证:f(x)-1为奇函数;
(2)求证:f(x)是R上的增函数;
(3)若f(4)=5,解不等式f(3m2-m-2)<3.
(1)要判断函数的奇偶性方法是f(x)+f(-x)=0.现在要判断f(x)-1的奇偶性即就是判断[f(x)-1]+[f(-x)-1]是否等于0.首先令x1=x2=0得到f(0)=1;然后令x1=x,x2=-x,则f(x-x)=f(x)+f(-x)-1证出即可; (2)要判断函数的增减性,就是在自变量范围中任意取两个x1<x2∈R,判断出f(x1)与f(x2)的大小即可知道增减性. (3)已知f(x1+x2)=f(x1)+f(x2)-1,且f(4)=5,则f(4)=f(2)+f(2)-1⇒f(2)=3.由不等式 f(3m2-m-2)<3,得f(3m2-m-2)<f(2),由(2)知,f(x)是R上的增函数,得到3m2-m-2<2,求出解集即可. 【解析】 (1)定义在R上的函数f(x)对任意的x1,x2∈R,都有f(x1+x2)=f(x1)+f(x2)-1成立, 令x1=x2=0,则f(0+0)=f(0)+f(0)-1⇒f(0)=1, 令x1=x,x2=-x,则f(x-x)=f(x)+f(-x)-1, ∴[f(x)-1]+[f(-x)-1]=0, ∴f(x)-1为奇函数. (2)由(1)知,f(x)-1为奇函数, ∴f(-x)-1=-[f(x)-1], 任取x1,x2∈R,且x1<x2,则x2-x1>0, ∵f(x1+x2)=f(x1)+f(x2)-1, ∴f(x2-x1)=f(x2)+f(-x1)-1=f(x2)-[f(x1)-1]= f(x2)-f(x1)+1. ∵当x>0时,f(x)>1, ∴f(x2-x1)=f(x2)-f(x1)+1>1,∴f(x1)<f(x2), ∴f(x)是R上的增函数. (3)∵f(x1+x2)=f(x1)+f(x2)-1,且f(4)=5, ∴f(4)=f(2)+f(2)-1⇒f(2)=3. 由不等式f(3m2-m-2)<3,得f(3m2-m-2)<f(2), 由(2)知,f(x)是R上的增函数, ∴3m2-m-2<2,∴3m2-m-4<0,∴-1<m<, ∴不等式f(3m2-m-2)<3的解集为(-1,).
复制答案
考点分析:
相关试题推荐
已知函数f(x)=x2+manfen5.com 满分网(x≠0,常数a∈R).
(1)讨论函数f(x)的奇偶性,并说明理由;
(2)若函数f(x)在[2,+∞)上为增函数,求实数a的取值范围.
查看答案
已知函数f(x)=manfen5.com 满分网(a、b、c∈Z)是奇函数,又f(1)=2,f(2)<3,求a、b、c的值.
查看答案
定义在R上的偶函数f(x)满足f(x+1)=-f(x),且在[-1,0]上是增函数,给出下列关于f(x)的判断:
①f(x)是周期函数;
②f(x)关于直线x=1对称;
③f(x)在[0,1]上是增函数;
④f(x)在[1,2]上是减函数;
⑤f(2)=f(0),
其中正确的序号是    查看答案
已知函数f(x)是定义在R上的偶函数,且满足f(x+1)+f(x)=3,当x∈[0,1]时,f(x)=2-x,则f(-2 009.9)=    查看答案
设函数f(x)是定义在R上的奇函数,若当x∈(0,+∞)时,f(x)=lg x,则满足f(x)>0的x的取值范围是    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.