满分5 > 高中数学试题 >

已知椭圆的左、右焦点分别为F1、F2,离心率,右准线方程为x=2. (1)求椭圆...

已知椭圆manfen5.com 满分网的左、右焦点分别为F1、F2,离心率manfen5.com 满分网,右准线方程为x=2.
(1)求椭圆的标准方程;
(2)过点F1的直线l与该椭圆交于M、N两点,且manfen5.com 满分网,求直线l的方程.
(1)由已知得,解得,由此能得到所求椭圆的方程. (2)由题意知F1(-1,0)、F2(1,0),①若直线l的斜率不存在, 则直线l的方程为x=-1,由得 设、,,这与已知相矛盾. ②若直线l的斜率存在,设直线直线l的斜率为k,则直线l的方程为y=k(x+1),设M(x1,y1)、N(x2,y2),联立,消元得(1+2k2)x2+4k2x+2k2-2=0.再由根与系数的关系进行求解. 【解析】 (1)由已知得, 解得 ∴∴所求椭圆的方程为 ( 2)由(1)得F1(-1,0)、F2(1,0) ①若直线l的斜率不存在,则直线l的方程为x=-1, 由得 设、, ∴,这与已知相矛盾. ②若直线l的斜率存在,设直线直线l的斜率为k,则直线l的方程为y=k(x+1), 设M(x1,y1)、N(x2,y2), 联立,消元得(1+2k2)x2+4k2x+2k2-2=0 ∴, ∴. 又∵ ∴ ∴ 化简得40k4-23k2-17=0 解得k2=1或k2=(舍去) ∴k=±1 ∴所求直线l的方程为y=x+1或y=-x-1
复制答案
考点分析:
相关试题推荐
已知函数f(x)=x3+2bx2+cx-2的图象在与x轴交点处的切线方程是y=5x-10.
(1)求函数f(x)的解析式;
(2)设函数g(x)=f(x)+manfen5.com 满分网mx,若g(x)的极值存在,求实数m的取值范围以及函数g(x)取得极值时对应的自变量x的值.
查看答案
manfen5.com 满分网如图,正方形ABCD所在平面与平面四边形ABEF所在平面互相垂直,△ABE是等腰直角三角形,AB=AE,FA=FE,∠AEF=45°
(I)求证:EF⊥平面BCE;
(Ⅱ)设线段CD、AE的中点分别为P、M,求证:PM∥平面BCE;
(Ⅲ)求二面角F-BD-A的大小.
查看答案
为振兴旅游业,四川省2009年面向国内发行总量为2000万张的熊猫优惠卡,向省外人士发行的是熊猫金卡(简称金卡),向省内人士发行的是熊猫银卡(简称银卡).某旅游公司组织了一个有36名游客的旅游团到四川名胜旅游,其中manfen5.com 满分网是省外游客,其余是省内游客.在省外游客中有manfen5.com 满分网持金卡,在省内游客中有manfen5.com 满分网持银卡.
(I)在该团中随机采访2名游客,求恰有1人持银卡的概率;
(II)在该团中随机采访2名游客,求其中持金卡与持银卡人数相等的概率.
查看答案
在△ABC中,A、B为锐角,角A、B、C所对的边分别为a、b、c,且cos2A=manfen5.com 满分网,sinB=manfen5.com 满分网
(1)求A+B的值;
(2)若a-b=manfen5.com 满分网-1,求a、b、c的值.
查看答案
设V是已知平面M上所有向量的集合,对于映射f:V→V,a∈V,记a的象为f(a).若映射f:V→V满足:对所有a、b∈V及任意实数λ,μ都有f(λa+μb)=λf(a)+μf(b),则f称为平面M上的线性变换.现有下列命题:
①设f是平面M上的线性变换,a、b∈V,则f(a+b)=f(a)+f(b);
②若e是平面M上的单位向量,对a∈V,设f(a)=a+e,则f是平面M上的线性变换;
③对a∈V,设f(a)=-a,则f是平面M上的线性变换;
④设f是平面M上的线性变换,a∈V,则对任意实数k均有f(ka)=kf(a).
其中的真命题是    (写出所有真命题的编号) 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.