满分5 > 高中数学试题 >

已知,其中e是无理数,a∈R. (1)若a=1时,f(x)的单调区间、极值; (...

已知manfen5.com 满分网,其中e是无理数,a∈R.
(1)若a=1时,f(x)的单调区间、极值;
(2)求证:在(1)的条件下,manfen5.com 满分网
(3)是否存在实数a,使f(x)的最小值是-1,若存在,求出a的值;若不存在,说明理由.
(1)由题意先对函数y进行求导,解出极值点,然后再根据函数的定义域,把极值点代入已知函数,比较函数值的大小,从而解出单调区间; (2)构造函数h(x)=g(x)+,对其求导,求出h(x)的最小值大于0,就可以了. (3)存在性问题,先假设存在,看是否能解出a值. 【解析】 (1)∵当a=1时,,∴,(1分) ∴当0<x<1时,f'(x)<0,此时f(x)单调递减 当1<x<e时,f'(x)>0,此时f(x)单调递增,(3分) ∴f(x)的单调递减区间为(0,1);单调递增区间为(1,e); f(x)的极小值为f(1)=1.(4分) (2)由(1)知f(x)在(0,e]上的最小值为1,(5分) 令h(x)=g(x)+,x∈(0,e]∴,(6分) 当0<x<e时,h′(x)>0,h(x)在(0,e]上单调递增,(7分) ∴, ∴在(1)的条件下,f(x)>g(x)+,(8分) (3)假设存在实数a,使,(x∈(0,e])有最小值-1, ∴,(9分) ①当a≤0时, ∵0<x≤e, ∴f'(x)>0, ∴f(x)在(0,e]上单调递增,此时f(x)无最小值.(10分) ②当0<a<e时, 若0<x<a,则f'(x)<0,故f(x)在(0,a)上单调递减, 若a<x<e,则f'(x)>0,故f(x)在(a,e]上单调递增.,,得,满足条件.(12分) 3当a≥e4时,∵0<x<e, ∴f'(x)<0, ∴f(x)在(0,e]上单调递减,(舍去),所以,此时无解.(13分) 综上,存在实数,使得当x∈(0,e]时f(x)的最小值是-1.(14分) (3)法二:假设存在实数a,使,x∈(0,e])的最小值是-1, 故原问题等价于:不等式,对x∈(0,e]恒成立,求“等号”取得时实数a的值. 即不等式a≥-x(1+lnx),对x∈(0,e]恒成立,求“等号”取得时实数a的值. 设g(x)=-x(1+lnx),即a=g(x)max,x∈(0,e](10分) 又(11分) 令 当,g'(x)>0,则g(x)在单调递增; 当,g'(x)<0,则g(x)在单调递减,(13分) 故当时,g(x)取得最大值,其值是 故. 综上,存在实数,使得当x∈(0,e]时f(x)的最小值是-1.(14分)
复制答案
考点分析:
相关试题推荐
已知△OFQ的面积为manfen5.com 满分网,且manfen5.com 满分网
(1)当manfen5.com 满分网时,求向量manfen5.com 满分网manfen5.com 满分网的夹角θ的取值范围;
(2)设manfen5.com 满分网,若以中心O为坐标原点,焦点F在x非负半轴上的双曲线经过点Q,当manfen5.com 满分网取得最小值时,求此双曲线的方程.

manfen5.com 满分网 查看答案
设数列{an}前和n为Sn,且(3-m)Sn+2man=m+3(n∈N*).其中m为常数,m≠-3,且m≠0.
(1)求证:{an}是等比数列;
(2)若数列{an}的公比q=f(m)=manfen5.com 满分网且数列{bn}中,manfen5.com 满分网,求bn的表达式.
查看答案
已知,如图:四边形ABCD为矩形,PA⊥平面ABCD,M、N分别是AB、PC的中点,
(1)求证:直线MN⊥直线AB;
(2)若平面PDC与平面ABCD所成的二面角大小为θ,能否确定θ使直线MN是异面直线AB与PC的公垂线,若能确定,求出θ的值,若不能确定,说明理由.

manfen5.com 满分网 查看答案
某工厂生产甲、乙两种产品,每种产品都是经过第一和第二工序加工而成,两道工序的加工结果相互独立,每道工序加工结果均有A,B两个等级,对每种产品,两道工序的加工结果都为A级时,产品为一等品,其余均为二等品.
manfen5.com 满分网
(1)已知甲、乙两种产品第一道工序的加工结果为A级的概率如表一所示,分别求生产出的甲、乙产品为一等级的概率P,P
(2)现要求生产甲,乙两种产品各100个和200个,求这批产品中甲,乙分别有多少个一等品;
(3)已知一件产品的利润如表二所示,用ξ、η分别表示一件甲、乙产品的利润,在(1)的条件下,求ξ、η的分布列及Eξ、Eη.
查看答案
已知函数manfen5.com 满分网
(Ⅰ)求函数f(x)的最小正周期;
(Ⅱ)若manfen5.com 满分网时,求f(x)的单调递减区间.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.