满分5 > 高中数学试题 >

已知、B、C是椭圆M:上的三点,其中点A的坐标为,BC过椭圆M的中心,且. (1...

已知、B、C是椭圆M:manfen5.com 满分网上的三点,其中点A的坐标为manfen5.com 满分网,BC过椭圆M的中心,且manfen5.com 满分网
(1)求椭圆M的方程;
(2)过点(0,t)的直线l(斜率存在时)与椭圆M交于两点P、Q,设D为椭圆M与y轴负半轴的交点,且manfen5.com 满分网,求实数t的取值范围.
(1)根据点A的坐标求出a,然后根据求出b,综合即可求出椭圆M的方程. (2)根据题意设出直线方程,与(1)中M的方程联立,然后运用设而不求韦达定理进行计算,求出实数t的取值范围. 【解析】 (1)∵点A的坐标为(,) ∴,椭圆方程为                 ① 又∵.,且BC过椭圆M的中心O(0,0), ∴. 又∵, ∴△AOC是以∠C为直角的等腰三角形, 易得C点坐标为(,) 将(,)代入①式得b2=4 ∴椭圆M的方程为 (2)当直线l的斜率k=0,直线l的方程为y=t 则满足题意的t的取值范围为-2<t<2 当直线l的斜率k≠0时,设直线l的方程为y=kx+t 由 得(3k2+1)x2+6ktx+3t2-12=0 ∵直线l与椭圆M交于两点P、Q, ∴△=(6kt)2-4(3k2+1)(3t2-12)>0 即t2<4+12k2 ② 设P(x1,y1),Q(x2,y2), PQ中点H(x,y), 则H的横坐标, 纵坐标, D点的坐标为(0,-2) 由, 得DH⊥PQ,kDH•kPQ=-1, 即, 即t=1+3k2.                                       ③ ∴k2>0,∴t>1.                                 ④ 由②③得0<t<4, 结合④得到1<t<4. 综上所述,-2<t<4.
复制答案
考点分析:
相关试题推荐
已知函数f(x)=manfen5.com 满分网x2+2ax,g(x)=3a2lnx+b.其中a,b∈R.
(1)设两曲线y=f(x)与y=g(x)有公共点,且在公共点处的切线相同,若a>0,试建立b关于a的函数关系式;
(2)在(1)的条件下求b的最大值;
(3)若b=0时,函数h(x)=f(x)+g(x)-(2a+6)x在(0,4)上为单调函数,求a的取值范围.
查看答案
已知斜三棱柱ABC-A1B1C1,侧面ACC1A1与底面ABC垂直,∠ABC=90°,manfen5.com 满分网,且AA1⊥A1C,AA1=A1C.
(1)试判断A1A与平面A1BC是否垂直,并说明理由;
(2)求侧面BB1C1C与底面ABC所成锐二面角的余弦值.

manfen5.com 满分网 查看答案
{an}是首项a1=4的等比数列,其前n项和为Sn,且S3,S2,S4成等差数列.
(1)求数列{an}的通项公式;
(2)若bn=log2|an|(n≥1,n∈N),设Tn为数列manfen5.com 满分网的前n项和,求证:manfen5.com 满分网
查看答案
甲、乙两位小学生各有2008年奥运吉祥物“福娃”5个(其中“贝贝”、“晶晶”、“欢欢”、“迎迎”和“妮妮各一个”),现以投掷一个骰子的方式进行游戏,规则如下:当出现向上的点数是奇数时,甲赢得乙一个福娃;否则乙赢得甲一个福娃,规定掷骰子的次数达9次时,或在此前某人已赢得所有福娃时游戏终止.记游戏终止时投掷骰子的次数为ξ
(1)求掷骰子的次数为7的概率;
(2)求ξ的分布列及数学期望Eξ.
查看答案
曲线y=2sin(x+manfen5.com 满分网)cos(x-manfen5.com 满分网)和直线y=manfen5.com 满分网在y轴右侧的交点按横坐标从小到大依次记为P1,P2,P3,…,则|P2P4|等于    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.