满分5 > 高中数学试题 >

如图,已知F1、F2是椭圆(a>b>0)的左、右焦点,点P在椭圆C上,线段PF2...

如图,已知F1、F2是椭圆manfen5.com 满分网(a>b>0)的左、右焦点,点P在椭圆C上,线段PF2与圆x2+y2=b2相切于点Q,且点Q为线段PF2的中点,则manfen5.com 满分网=    ;椭圆C的离心率为   
manfen5.com 满分网
本题考察的知识点是平面向量的数量积的运算,及椭圆的简单性质,由F1、F2是椭圆(a>b>0)的左、右焦点,点P在椭圆C上,线段PF2与圆x2+y2=b2相切于点Q,且点Q为线段PF2的中点,连接OQ,F1P后,我们易根据平面几何的知识,根据切线的性质及中位线的性质得到PF2⊥PF1,由此易得的值,并由此得到椭圆C的离心率. 【解析】 连接OQ,F1P如下图所示: 则由切线的性质,则OQ⊥PF2, 又由点Q为线段PF2的中点,O为F1F2的中点 ∴OQ∥F1P ∴PF2⊥PF1, ∴=0 故|PF2|=2a-2b, 且|PF1|=2b,|F1F2|=2c, 则|F1F2|2=|PF1|2+|PF2|2 得4c2=4b2+4(a2-2ab+b2) 解得:b=a 则c= 故椭圆的离心率为: 故答案为:0,.
复制答案
考点分析:
相关试题推荐
设向量manfen5.com 满分网manfen5.com 满分网,其中0<α<β<π,若manfen5.com 满分网,则β-α=    查看答案
已知正数x、y满足manfen5.com 满分网,则z=4-xmanfen5.com 满分网的最小值为    查看答案
等差数列{an}中,a4+a5=8,a9+a10=28,则a1等于    查看答案
已知函数manfen5.com 满分网manfen5.com 满分网的值是    查看答案
manfen5.com 满分网执行下边的程序框图,若p=0.8,则输出的n=    查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.