满分5 > 高中数学试题 >

如图,矩形ABCD中,AD⊥平面ABE,AE=EB=BC=2,F为CE上的点,且...

如图,矩形ABCD中,AD⊥平面ABE,AE=EB=BC=2,F为CE上的点,且BF⊥平面ACE.
(Ⅰ)求证:AE⊥平面BCE;
(Ⅱ)求证;AE∥平面BFD;
(Ⅲ)求三棱锥C-BGF的体积.

manfen5.com 满分网
(1)先证明AE⊥BC,再证AE⊥BF,由线面垂直的判定定理证明结论. (2)利用F、G为边长的中点证明FG∥AE,由线面平行的判定定理证明结论. (3)运用等体积法,先证FG⊥平面BCF,把原来的三棱锥的底换成面BCF,则高就是FG,代入体积公式求三棱锥的体积. 【解析】 (Ⅰ)证明:∵AD⊥平面ABE,AD∥BC, ∴BC⊥平面ABE,则AE⊥BC.又∵BF⊥平面ACE,则AE⊥BF ∴AE⊥平面BCE.(4分) (Ⅱ)证明:依题意可知:G是AC中点, ∵BF⊥平面ACE,则CE⊥BF,而BC=BE,∴F是EC中点.(6分) 在△AEC中,FG∥AE,∴AE∥平面BFD.(8分) (Ⅲ)【解析】 ∵AE∥平面BFD,∴AE∥FG,而AE⊥平面BCE, ∴FG⊥平面BCE,∴FG⊥平面BCF,(10分) ∵G是AC中点,∴F是CE中点,且, ∵BF⊥平面ACE,∴BF⊥CE.∴Rt△BCE中,. ∴,(12分)∴(14分)
复制答案
考点分析:
相关试题推荐
已知manfen5.com 满分网
(Ⅰ)求f(x)的最小正周期;
(Ⅱ)求f(x)在区间manfen5.com 满分网上的最大值和最小值.
查看答案
已知f(x)是奇函数,满足f(x+2)=f(x),当x∈[0,1]时,f(x)=2x-1,则f(2)=    manfen5.com 满分网的值是     查看答案
向x∈manfen5.com 满分网,y∈[0,1]的区域内投一石子,则石子落在区域manfen5.com 满分网内的概率是     查看答案
manfen5.com 满分网右面框图表示的程序所输出的结果是    查看答案
一个社会调查机构就某地居民的月收入调查了10000人,并根据所得数据画了样本的频率分布直方图(如图).为了分析居民的收入与年龄、学历、职业等方面的关系,要从这10000人中再用分层抽样方法抽出100人作进一步调查,则在[2500,3000)(元)月收入段应抽出    人.
manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.