满分5 > 高中数学试题 >

已知函数f(x)=xlnx. (Ⅰ)求f(x)的最小值; (Ⅱ)若对所有x≥1都...

已知函数f(x)=xlnx.
(Ⅰ)求f(x)的最小值;
(Ⅱ)若对所有x≥1都有f(x)≥ax-1,求实数a的取值范围.
(1)先求出函数的定义域,然后求导数,根据导函数的正负判断函数的单调性进而可求出最小值. (2)将f(x)≥ax-1在[1,+∞)上恒成立转化为不等式对于x∈[1,+∞)恒成立,然后令,对函数g(x)进行求导,根据导函数的正负可判断其单调性进而求出最小值,使得a小于等于这个最小值即可. 【解析】 (Ⅰ)f(x)的定义域为(0,+∞),f(x)的导数f'(x)=1+lnx. 令f'(x)>0,解得;令f'(x)<0,解得. 从而f(x)在单调递减,在单调递增. 所以,当时,f(x)取得最小值. (Ⅱ)依题意,得f(x)≥ax-1在[1,+∞)上恒成立, 即不等式对于x∈[1,+∞)恒成立. 令, 则. 当x>1时, 因为, 故g(x)是(1,+∞)上的增函数, 所以g(x)的最小值是g(1)=1, 从而a的取值范围是(-∞,1].
复制答案
考点分析:
相关试题推荐
如图,在三棱锥P-ABC中,PA=PB,PA⊥PB,AB⊥BC,∠BAC=30°,平面PAB⊥平面ABC.
(Ⅰ)求证:PA⊥平面PBC;
(Ⅱ)求二面角P-AC-B的大小;
(Ⅲ)求异面直线AB和PC所成角的大小.

manfen5.com 满分网 查看答案
盒内有大小相同的9个球,其中2个红色球,3个白色球,4个黑色球.规定取出1个红色球得1分,取出1个白色球得0分,取出1个黑色球得-1分.现从盒内任取3个球.
(Ⅰ)求取出的3个球颜色互不相同的概率;
(Ⅱ)求取出的3个球得分之和恰为1分的概率;
(Ⅲ)设ξ为取出的3个球中白色球的个数,求ξ的分布列和数学期望.
查看答案
在△ABC中,manfen5.com 满分网manfen5.com 满分网
(Ⅰ)求角C;
(Ⅱ)设manfen5.com 满分网,求△ABC的面积.
查看答案
已知点G是△ABC的重心,manfen5.com 满分网,那么λ+μ=    ;若∠A=120°,manfen5.com 满分网,则manfen5.com 满分网的最小值是    查看答案
已知两点A(1,0),B(b,0),若抛物线y2=4x上存在点C,使得△ABC为正三角形,则b=    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.