根据抛物线方程可求得焦点坐标和准线方程,设过F的直线方程,与抛物线方程联立,整理后,设A(x1,y1),B(x2,y2)根据韦达定理可求得x1x2的值,又根据抛物线定义可知|AF|=x1+1,|BF|=x2+1代入+答案可得.
【解析】
易知F坐标(1,0)准线方程为x=-1.
设过F点直线方程为y=k(x-1)
代入抛物线方程,得 k2(x-1)2=4x.
化简后为:k2x2-(2k2+4)x+k2=0.
设A(x1,y1),B(x2,y2)
则有x1x2=1
根据抛物线性质可知,|AF|=x1+1,|BF|=x2+1
∴+====1
故答案为1