满分5 > 高中数学试题 >

为了解某班学生喜爱打篮球是否与性别有关,对此班50人进行了问卷调查得到了如下的列...

为了解某班学生喜爱打篮球是否与性别有关,对此班50人进行了问卷调查得到了如下的列联表:
喜爱打篮球不喜爱打篮球合计
男生5
女生10
合计50
已知在全部50人中随机抽取1人抽到喜爱打篮球的学生的概率为manfen5.com 满分网
(1)请将上面的列联表补充完整;
(2)是否有99.5%的把握认为喜爱打篮球与性别有关?说明你的理由;
(3)已知喜爱打篮球的10位女生中,A1,A2,A3,A4,A5还喜欢打羽毛球,B1,B2,B3还喜欢打乒乓球,C1,C2还喜欢踢足球,现再从喜欢打羽毛球、喜欢打乒乓球、喜欢踢足球的女生中各选出1名进行其他方面的调查,求B1和C1不全被选中的概率.
下面的临界值表供参考:
p(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
(参考公式:manfen5.com 满分网,其中n=a+b+c+d)
(1)根据在全部50人中随机抽取1人抽到喜爱打篮球的学生的概率,做出喜爱打篮球的人数,进而做出男生的人数,填好表格. (2)根据所给的公式,代入数据求出临界值,把求得的结果同临界值表进行比较,看出有多大的把握说明打篮球和性别有关系. (3)从10位女生中选出喜欢打羽毛球、喜欢打乒乓球、喜欢踢足球的各1名,其一切可能的结果组成的基本事件有5×3×2,而满足条件的事件B1和C1不全被选中,通过列举得到事件数,求出概率. 【解析】 (1)∵在全部50人中随机抽取1人抽到喜爱打篮球的学生的概率为. ∴在50人中,喜爱打篮球的有=30, ∴男生喜爱打篮球的有30-10=20, 列联表补充如下: 喜爱打篮球 不喜爱打篮球 合计 男生 20 5 25 女生 10 15 25 合计 30 20 50 (2)∵ ∴有99.5%的把握认为喜爱打篮球与性别有关. (3)从10位女生中选出喜欢打羽毛球、喜欢打乒乓球、喜欢踢足球的各1名, 其一切可能的结果组成的基本事件有5×3×2=30种,如下:(A1,B1,C1),(A1,B1,C2),(A1,B2,C1),(A1,B2,C2),(A1,B3,C1),(A1,B3,C2),(A2,B1,C1),(A2,B1,C2),(A2,B2,C1),(A2,B2,C2),(A2,B3,C1),(A2,B3,C2),(A3,B1,C1),(A3,B1,C2),(A3,B2,C1),(A3,B3,C2),(A3,B2,C2),(A3,B3,C1),(A4,B1,C1),(A4,B1,C2),(A4,B2,C1),(A4,B2,C2),(A4,B3,C1),(A4,B3,C2),(A5,B1,C1),(A5,B1,C2),(A5,B2,C1),(A5,B2,C2),(A5,B3,C1),(A5,B3,C2), 基本事件的总数为30, 用M表示“B1,C1不全被选中”这一事件, 则其对立事件表示“B1,C1全被选中”这一事件, 由于由(A1,B1,C1),(A2,B1,C1),(A3,B1,C1),(A4,B1,C1),(A5,B1,C1) 5个基本事件组成, ∴, ∴由对立事件的概率公式得.
复制答案
考点分析:
相关试题推荐
某品牌的汽车4S店,对最近100位采用分期付款的购车者进行统计,统计结果如右表所示:已知分3期付款的频率为0.2,4S店经销一辆该品牌的汽车,顾客分1期付款,其利润为1万元;分2期或3期付款其利润为1.5万元;分4期或5期付款,其利润为2万元.用η表示经销一辆汽车的利润.
(1)求上表中的a,b值;
(2)若以频率作为概率,求事件A:“购买该品牌汽车的3位顾客中,至多有1位采用3期付款”的概率P(A);
(3)求η的分布列及数学期望Eη.
manfen5.com 满分网
查看答案
manfen5.com 满分网某高校在2009年的自主招生考试成绩中随机抽取100名学生的笔试成绩,按成绩分组,得到的频率分布表如图所示.
组号分组频数频率
第1组[160,165)50.050
第2组[165,170)0.350
第3组[170,175)30
第4组[175,180)200.200
第5组[180,185)100.100
合计1001.00
(1)请先求出频率分布表中①、②位置相应数据,再在答题纸上完成下列频率分布直方图;
(2)为了能选拔出最优秀的学生,高校决定在笔试成绩高的第3、4、5组中用分层抽样抽取6名学生进入第二轮面试,求第3、4、5组每组各抽取多少名学生进入第二轮面试?
(3)在(2)的前提下,学校决定在6名学生中随机抽取2名学生接受A考官进行面试,求:第4组至少有一名学生被考官A面试的概率?
查看答案
在一个圆锥体的培养房内培养了40只蜜蜂,准备进行某种实验,过圆锥高的中点有一个不计厚度且平行于圆锥底面的平面把培养房分成两个实验区,其中小锥体叫第一实验区,圆台体叫第二实验区,且两个实验区是互通的.假设蜜蜂落入培养房内任何位置是等可能的,且蜜蜂落入哪个位置相互之间是不受影响的.
(1)求蜜蜂落入第二实验区的概率;
(2)若其中有10只蜜蜂被染上了红色,求恰有一只红色蜜蜂落入第二实验区的概率;
(3)记X为落入第一实验区的蜜蜂数,求随机变量X的数学期望EX.
查看答案
已知直线l1:x-2y-1=0,直线l2:ax-by+1=0,其中a,b∈{1,2,3,4,5,6}.
(1)求直线l1∩l2=∅的概率;
(2)求直线l1与l2的交点位于第一象限的概率.
查看答案
有一个底面圆半径为1、高为2的圆柱,点O为这个圆柱底面圆的圆心,在这个圆柱内随机取一点P,则点P到点O的距离大于1的概率为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.