满分5 > 高中数学试题 >

在△ABC中,a,b,c分别为角A、B、C的对边,且满足b2+c2-a2=bc....

在△ABC中,a,b,c分别为角A、B、C的对边,且满足b2+c2-a2=bc.
(Ⅰ)求角A的值;
(Ⅱ)若a=manfen5.com 满分网,设角B的大小为x,△ABC的周长为y,求y=f(x)的最大值.
(1)先根据余弦定理求出角A的余弦值,然后可得到角A的值. (2)先根据正弦定理用角B表示出边b,c,然后代入整理成y=Asin(wx+ρ)+b的形式,再由正弦函数的性质可求最大值. 【解析】 (Ⅰ)在△ABC中,由b2+c2-a2=bc及余弦定理, 得cosA=, 而0<A<π,则A=; (Ⅱ)由a=,A=及正弦定理, 得, 而C=-B,则 b=2sinB,c=2sin(-B)(0<B<). 于是y=a+b+c=+2sinB+2sin(-B)=2sin(B+)+, 由0<B<,得<B+<, 当B+=即B=时,.
复制答案
考点分析:
相关试题推荐
请阅读下列材料:若两个正实数a1,a2满足a12+a22=1,那么a1+a2manfen5.com 满分网.证明:构造函数f(x)=(x-a12+(x-a22=2x2-2(a1+a2)x+1,因为对一切实数x,恒有f(x)≥0,所以△≤0,从而得4(a1+a22-8≤0,所以a1+a2manfen5.com 满分网.根据上述证明方法,若n个正实数满足a12+a22+…+an2=1时,你能得到的结论为    查看答案
manfen5.com 满分网已知函数f(x)=x3+ax2+bx(a,b∈R)的图象如图所示,它与直线y=0在原点处相切,此切线与函数图象所围区域(图中阴影部分)的面积为manfen5.com 满分网,则a的值为    查看答案
按如图所示的程序框图运行后,输出的结果是63,则判断框中的整数M的值是    
manfen5.com 满分网 查看答案
已知变量x,y满足约束条件manfen5.com 满分网,则manfen5.com 满分网的取值范围是    查看答案
设a=(a1,a2),b=(b1,b2),定义一种向量积:a⊗b=(a1,b1)⊗(b1,b2)=(a1b1,a2b2).已知m=manfen5.com 满分网,n=manfen5.com 满分网,点P(x,y)在y=sin x的图象上运动,点Q在y=f(x)的图象上运动,且满足(x,f(x))=m⊗n(其中O为坐标原点),则y=f(x)的最大值A及最小正周期T分别( )
A.2,π
B.2,4π
C.manfen5.com 满分网,4π
D.manfen5.com 满分网,π
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.