满分5 > 高中数学试题 >

如图,已知椭圆的长轴为AB,过点B的直线l与x轴垂直.直线(2-k)x-(1+2...

如图,已知椭圆manfen5.com 满分网的长轴为AB,过点B的直线l与x轴垂直.直线(2-k)x-(1+2k)y+(1+2k)=0(k∈R)所经过的定点恰好是椭圆的一个顶点,且椭圆的离心率manfen5.com 满分网
(1)求椭圆的标准方程;
(2)设P是椭圆上异于A、B的任意一点,PH⊥x轴,H为垂足,延长HP到点Q使得HP=PQ,连接AQ延长交直线l于点M,N为MB的中点.试判断直线QN与以AB为直径的圆O的位置关系.

manfen5.com 满分网
(1)将直线方程整理得,解方程组求得直线所经过的定点,进而求得b,进而根据离心率求得a,则椭圆的方程可得. (2)设P(x,y)代入椭圆方程,进而表示出Q的坐标,求得|OQ|推断出Q点在以O为圆心,2为半径的圆上.根据点A的坐标表示出直线AQ的方程,令x=0,表示出M和N的坐标,代入求得结果为0,进而可推知OQ⊥QN,推断出直线QN与圆O相切. 【解析】 (1)将(2-k)x-(1+2k)y+(1+2k)=0 整理得(-x-2y+2)k+2x-y+1=0 解方程组 得直线所经过的定点(0,1),所以b=1. 由离心率得a=2. 所以椭圆的标准方程为. (2)设P(x,y),则. ∵HP=PQ,∴Q(x,2y).∴ ∴Q点在以O为圆心,2为半径的圆上. 即Q点在以AB为直径的圆O上. 又A(-2,0), ∴直线AQ的方程为. 令x=2,得.又B(2,0),N为MB的中点, ∴. ∴,. ∴ =x(x-2)+x(2-x)=0. ∴.∴直线QN与圆O相切.
复制答案
考点分析:
相关试题推荐
manfen5.com 满分网如图,在直三棱柱ABC-A1B1C1中,底面△ABC为等腰直角三角形,∠B=90°,D为棱BB1上一点,且平面DA1C⊥平面AA1C1C.
(1)求证:D点为棱BB1的中点;
(2)若二面角A-A1D-C的平面角为60°,求manfen5.com 满分网的值.
查看答案
设有3个投球手,其中一人命中率为q,剩下的两人水平相当且命中率均为p(p,q∈(0,1)),每位投球手均独立投球一次,记投球命中的总次数为随机变量为ξ.
(Ⅰ)当p=q=manfen5.com 满分网时,求E(ξ)及D(ξ);
(Ⅱ)当manfen5.com 满分网manfen5.com 满分网时,求ξ的分布列和E(ξ).
查看答案
在△ABC中,a,b,c分别为角A、B、C的对边,且满足b2+c2-a2=bc.
(Ⅰ)求角A的值;
(Ⅱ)若a=manfen5.com 满分网,设角B的大小为x,△ABC的周长为y,求y=f(x)的最大值.
查看答案
请阅读下列材料:若两个正实数a1,a2满足a12+a22=1,那么a1+a2manfen5.com 满分网.证明:构造函数f(x)=(x-a12+(x-a22=2x2-2(a1+a2)x+1,因为对一切实数x,恒有f(x)≥0,所以△≤0,从而得4(a1+a22-8≤0,所以a1+a2manfen5.com 满分网.根据上述证明方法,若n个正实数满足a12+a22+…+an2=1时,你能得到的结论为    查看答案
manfen5.com 满分网已知函数f(x)=x3+ax2+bx(a,b∈R)的图象如图所示,它与直线y=0在原点处相切,此切线与函数图象所围区域(图中阴影部分)的面积为manfen5.com 满分网,则a的值为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.