满分5 > 高中数学试题 >

椭圆C的中心坐标为原点O,焦点在y轴上,焦点到相应准线的距离以及离心率均为,直线...

椭圆C的中心坐标为原点O,焦点在y轴上,焦点到相应准线的距离以及离心率均为manfen5.com 满分网,直线l与y轴交于点P(0,m),与椭圆C交于相异两点Amanfen5.com 满分网
(1)求椭圆方程;
(2)若manfen5.com 满分网的取值范围。.
(1)利用待定系数法求椭圆的方程,设出椭圆C的标准方程,依条件得出a,b的方程,求出a,b即得椭圆C的方程. (2)先设l与椭圆C交点为A(x1,y1),B(x2,y2),将直线的方程代入椭圆的方程,消去y得到关于x的一元二次方程,再结合根系数的关系利用向量条件即可求得m的取值范围,从而解决问题. 【解析】 (1)设椭圆C的方程:,则c2=a2-b2,, 故椭圆C的方程为y2+2x2=1.(4分) (2)由, ∴. ∵, ∴λ+1=4,λ=3. 设l与椭圆C交点为A(x1,y1),B(x2,y2), 得(k2+2)x2+2kmx+(m2-1)=0, 因此△=(2km)2-4(k2+2)(m2-1) =4(k2-2m2+2)>0,① 则x1+x2=. ∵,∴-x1=3x2,得 得3(x1+x2)2+4x1x2=0, ∴, 整理得:4k2m2+2m2-k2-2=0. 当时,上式不成立. ∴. 由①式得k2>2m2-2, ∵λ=3,∴k≠0,, 所以或. 即所求m的取值范围为(14分)
复制答案
考点分析:
相关试题推荐
已知集合A={x|x2+a≤(a+1)x,a∈R}.
(Ⅰ)求A;
(Ⅱ)若a>0,以a为首项,a为公比的等比数列前n项和记为Sn,对于任意的n∈N+,均有Sn∈A,求a的取值范围.
查看答案
已知数列{an}的前n项和为Sn,通项公式为manfen5.com 满分网manfen5.com 满分网
(Ⅰ)计算f(1),f(2),f(3)的值;
(Ⅱ)比较f(n)与1的大小,并用数学归纳法证明你的结论.
查看答案
设曲线y=e-x(x≥0)在点M(t,e-t)处的切线L与x轴y轴所围成的三角形面积为S(t),求S(t)的解析式.
查看答案
求函数y=x2(x>0)与函数y=2x的图象所围成的封闭区域的面积.
查看答案
已知函数manfen5.com 满分网R,a>1),
(1)求函数f(x)的值域;
(2)记函数g(x)=f(-x),x∈[-2,+∞],若g(x)的最小值与a无关,求a的取值范围;
(3)若manfen5.com 满分网,直接写出(不需给出演算步骤)关于x的方程f(x)=m的解集.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.