满分5 > 高中数学试题 >

如图,在三棱锥A-BCD中,侧面ABD、ACD是全等的直角三角形,AD是公共的斜...

如图,在三棱锥A-BCD中,侧面ABD、ACD是全等的直角三角形,AD是公共的斜边,且AD=manfen5.com 满分网,BD=CD=1,另一个侧面是正三角形.
(1)求证:AD⊥BC.
(2)求二面角B-AC-D的大小.
(3)在直线AC上是否存在一点E,使ED与面BCD成30°角?若存在,确定E的位置;若不存在,说明理由.

manfen5.com 满分网
(1)方法一:根据三垂线定理可得:作AH⊥面BCD于H,连DH.由长度计算可得:BHCD是正方形,所以DH⊥BC,则AD⊥BC. 方法二:证明异面直线垂直,也可以先证明直线与平面垂直:取BC的中点O,连AO、DO,则有AO⊥BC,DO⊥BC,所以BC⊥面AOD (2)二面角的度量关键在于作出它的平面角,常用的方法就是三垂线定理.作BM⊥AC于M,作MN⊥AC交AD于N,则∠BMN就是二面角B-AC-D的平面角,再根据余弦定理即可求得cos∠BMN的大小. (3)直线与平面所成的角,需先作出平面的垂线:设E是所求的点,作EF⊥CH于F,连FD.则EF∥AH,所以EF⊥面BCD,∠EDF就是ED与面BCD所成的角,则∠EDF=30°. 【解析】 (1)方法一:作AH⊥面BCD于H,连DH. AB⊥BD⇒HB⊥BD,又AD=,BD=1 ∴AB==BC=AC ∴BD⊥DC 又BD=CD,则BHCD是正方形, 则DH⊥BC∴AD⊥BC 方法二:取BC的中点O,连AO、DO 则有AO⊥BC,DO⊥BC,∴BC⊥面AOD ∴BC⊥AD (2)作BM⊥AC于M,作MN⊥AC交AD于N,则∠BMN就是二面角B-AC-D的平面角,因为AB=AC=BC= ∵M是AC的中点,则BM=,MN=CD=,BN=AD=,由余弦定理可求得cos∠BMN= ∴∠BMN=arccos (3)设E是所求的点,作EF⊥CH于F,连FD.则EF∥AH, ∴EF⊥面BCD,∠EDF就是ED与面BCD所成的角, 则∠EDF=30°. 设EF=x,易得AH=HC=1,则CF=x,FD=, ∴tan∠EDF=== 解得x=, 则CE=,x=1 故线段AC上存在E点,且CE=1时,ED与面BCD成30°角.
复制答案
考点分析:
相关试题推荐
已知定义在正实数集上的函数manfen5.com 满分网,g(x)=3a2lnx+b,其中a>0,设两曲线y=f(x),y=g(x)有公共点,且在该点处的切线相同.
(I)用a表示b,并求b的最大值;
(II)求证:f(x)≥g(x)(x>0).
查看答案
甲、乙、丙三人按下面的规则进行乒乓球比赛:第一局由甲、乙参加而丙轮空,以后每一局由前一局的获胜者与轮空者进行比赛,而前一局的失败者轮空.比赛按这种规则一直进行到其中一人连胜两局或打满6局时停止.设在每局中参赛者胜负的概率均为manfen5.com 满分网,且各局胜负相互独立.求:
(Ⅰ)打满3局比赛还未停止的概率;
(Ⅱ)比赛停止时已打局数ξ的分别列与期望Eξ.
查看答案
已知△ABC的面积为3,且满足manfen5.com 满分网,设manfen5.com 满分网manfen5.com 满分网的夹角为θ.
(I)求θ的取值范围;
(II)求函数manfen5.com 满分网的最大值与最小值.
查看答案
从2,3,4,5,6中任取一个数,是合数的概率是    查看答案
将10个相同的小球装入编号为1、2、3的三个盒子中(每次要把10个小球装完),要求每个盒子里小球的个数不小于盒子的编号数,这样的装法共有    种.(要求用数字作答) 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.