满分5 > 高中数学试题 >

已知两定点,,满足条件=2的点P的轨迹是曲线E,直线y=kx-1与曲线E交于A、...

已知两定点manfen5.com 满分网manfen5.com 满分网,满足条件manfen5.com 满分网=2的点P的轨迹是曲线E,直线y=kx-1与曲线E交于A、B两点.如果manfen5.com 满分网且曲线E上存在点C,使manfen5.com 满分网求m的值和△ABC的面积S.
先判断曲线E形状,求出曲线E的方程,直线AB方程代入,利用判别式及根与系数关系求出直线AB斜率范围,利用弦长公式求出斜率k的值,得到直线AB方程.设出点C的坐标,依据条件用m表示点C的坐标,再代入曲线E的方程求得m值,点C到直线AB的距离为高,计算三角形面积. 【解析】 由双曲线的定义可知, 曲线E是以为焦点的双曲线的左支, 且,易知b=1 故曲线E的方程为x2-y2=1(x<0) 设A(x1,y1),B(x2,y2),由题意建立方程组 消去y,得(1-k2)x2+2kx-2=0 又已知直线与双曲线左支交于两点A,B, 有 解得 又∵ = = = 依题意得 整理后得28k4-55k2+25=0 ∴或但 ∴ 故直线AB的方程为 设C(xc,yc),由已知,得(x1,y1)+(x2,y2)=(mxc,myc) ∴,(m≠0) 又, ∴点C(,) 将点C的坐标代入曲线E的方程,得 得m=±4,但当m=-4时,所得的点在双曲线的右支上,不合题意 ∴m=4,C点的坐标为C到AB的距离为 ∴△ABC的面积.
复制答案
考点分析:
相关试题推荐
如图,在三棱锥A-BCD中,侧面ABD、ACD是全等的直角三角形,AD是公共的斜边,且AD=manfen5.com 满分网,BD=CD=1,另一个侧面是正三角形.
(1)求证:AD⊥BC.
(2)求二面角B-AC-D的大小.
(3)在直线AC上是否存在一点E,使ED与面BCD成30°角?若存在,确定E的位置;若不存在,说明理由.

manfen5.com 满分网 查看答案
已知定义在正实数集上的函数manfen5.com 满分网,g(x)=3a2lnx+b,其中a>0,设两曲线y=f(x),y=g(x)有公共点,且在该点处的切线相同.
(I)用a表示b,并求b的最大值;
(II)求证:f(x)≥g(x)(x>0).
查看答案
甲、乙、丙三人按下面的规则进行乒乓球比赛:第一局由甲、乙参加而丙轮空,以后每一局由前一局的获胜者与轮空者进行比赛,而前一局的失败者轮空.比赛按这种规则一直进行到其中一人连胜两局或打满6局时停止.设在每局中参赛者胜负的概率均为manfen5.com 满分网,且各局胜负相互独立.求:
(Ⅰ)打满3局比赛还未停止的概率;
(Ⅱ)比赛停止时已打局数ξ的分别列与期望Eξ.
查看答案
已知△ABC的面积为3,且满足manfen5.com 满分网,设manfen5.com 满分网manfen5.com 满分网的夹角为θ.
(I)求θ的取值范围;
(II)求函数manfen5.com 满分网的最大值与最小值.
查看答案
从2,3,4,5,6中任取一个数,是合数的概率是    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.