满分5 > 高中数学试题 >

如图,直二面角D-AB-E中,四边形ABCD是边长为2的正方形,AE=EB,F为...

manfen5.com 满分网如图,直二面角D-AB-E中,四边形ABCD是边长为2的正方形,AE=EB,F为CE上的点,且BF⊥平面ACE.
(Ⅰ)求证AE⊥平面BCE;
(Ⅱ)求二面角B-AC-E的大小;
(Ⅲ)求点D到平面ACE的距离.
(Ⅰ)要证AE⊥平面BCE,只需证明AE垂直平面BCE内的两条相交直线BF、BC即可; (Ⅱ)连接AC、BD交于G,连接FG,说明∠FGB为二面角B-AC-E的平面角,然后求二面角B-AC-E的大小; (Ⅲ)利用VD-ACE=VE-ACD,求点D到平面ACE的距离,也可以利用空间直角坐标系,向量的数量积,证明垂直,求出向量的模. 【解析】 (I)∵BF⊥平面ACE, ∴BF⊥AE, ∵二面角D-AB-E为直二面角, ∴平面ABCD⊥平面ABE,又BC⊥AB,∴BC⊥平面ABE,∴BC⊥AE, 又BF⊂平面BCE,BF∩BC=B,∴AE⊥平面BCE. (II)连接AC、BD交于G,连接FG, ∵ABCD为正方形,∴BD⊥AC, ∵BF⊥平面ACE, ∴FG⊥AC,∠FGB为二面角B-AC-E的平面角,由(I)可知,AE⊥平面BCE,∴AE⊥EB, 又AE=EB,AB=2,AE=BE=, 在直角三角形BCE中,CE==,BF=== 在正方形中,BG=,在直角三角形BFG中,sin∠FGB=== ∴二面角B-AC-E为arcsin. (III)由(II)可知,在正方形ABCD中,BG=DG,D到平面ACB的距离等于B到平面ACE的距离,BF⊥平面ACE,线段BF的长度就是点B到平面ACE的距离,即为D到平面ACE的距离所以D到平面的距离为=. 另法:过点E作EO⊥AB交AB于点O.OE=1. ∵二面角D-AB-E为直二面角,∴EO⊥平面ABCD. 设D到平面ACE的距离为h, ∵VD-ACE=VE-ACD,∴•h=•EO. ∵AE⊥平面BCE,∴AE⊥EC.∴h=== ∴点D到平面ACE的距离为. 解法二: (Ⅰ)同解法一. (Ⅱ)以线段AB的中点为原点O,OE所在直线为x轴,AB所在直线为y轴, 过O点平行于AD的直线为z轴,建立空间直角坐标系O-xyz,如图. ∵AE⊥面BCE,BE⊂面BCE,∴AE⊥BE, 在Rt△AEB中,AB=2,O为AB的中点, ∴OE=1.∴A(0,-1,0),E(1,0,0),C(0,1,2),=(1,1,0),=(0,2,2) 设平面AEC的一个法向量为=(x,y,z), 则,即, 解得, 令x=1,得=(1,-1,1)是平面AEC的一个法向量. 又平面BAC的一个法向量为=(1,0,0), ∴cos(,)===. ∴二面角B-AC-E的大小为arccos (III)∵AD∥z轴,AD=2,∴=(0,0,2), ∴点D到平面ACE的距离d=||•|cos<,>===.
复制答案
考点分析:
相关试题推荐
已知函数f(x)=x3+bx2+ax+d的图象过点P(0,2),且在点M(-1,f(-1))处的切线方程为6x-y+7=0.
(Ⅰ)求函数y=f(x)的解析式;
(Ⅱ)求函数y=f(x)的单调区间.
查看答案
已知{an}是公比为q的等比数列,且a1,a3,a2成等差数列.
(Ⅰ)求q的值;
(Ⅱ)设{bn}是以2为首项,q为公差的等差数列,其前n项和为Sn,当n≥2时,比较Sn与bn的大小,并说明理由.
查看答案
甲、乙两人在罚球线投球命中的概率分别为manfen5.com 满分网manfen5.com 满分网,投中得1分,投不中得0分.
(Ⅰ)甲、乙两人在罚球线各投球一次,求两人得分之和ξ的数学期望;
(Ⅱ)甲、乙两人在罚球线各投球二次,求这四次投球中至少一次命中的概率;
查看答案
已知manfen5.com 满分网manfen5.com 满分网
(1)求sinx-cosx的值;
(2)求manfen5.com 满分网的值.
查看答案
请将下面不完整的命题补充完整,并使之成为真命题:若函数f(x)=2x-1的图象与g(x)的图象关于直线     对称,则g(x)=    .(注:填上你认为可以成为真命题的一种情形即可) 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.